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ABSTRACT 

 

The chromosomal sex of the embryo is established at 
fertilization. However, 6 weeks elapse in humans before the 
first signs of sex differentiation are noticed. Sex 
differentiation involves a series of events whereby the 
sexually indifferent gonads and genitalia progressively 
acquire male or female characteristics. Believed initially to 
be governed entirely by the presence or absence of the SRY 
gene on the Y chromosome, gonadal determination has 
proven to rely on a complex network of genes, whose 
balanced expression levels either activate the testis 
pathway and simultaneously repress the ovarian pathway 
or vice versa. The presence or absence of primordial germ 
cells, of extragonadal origin, also has a sexually dimorphic 
relevance. Subsequently, internal and external genitalia will 
follow the male pathway in the presence of androgens and 
anti-Müllerian hormone (AMH), or the female pathway in 
their absence. Here we review the sexually undifferentiated 
stage of embryonic development, and the anatomic, 
histologic, physiologic and molecular aspects of the fetal 
sexual differentiation of the gonads, the internal 
reproductive tract and the external genitalia. 

 

INTRODUCTION  

 

Genital sex differentiation involves a series of events 
whereby the sexually indifferent embryo progressively 
acquires male or female characteristics in the gonads, 
genital tract and external genitalia. Sex development 
consists of several sequential stages. Genetic sex, as 
determined by the chromosome constitution, drives the 
primitive gonad to differentiate into a testis or an ovary. 
Subsequently, internal and external genitalia will follow the 
male pathway in the presence of specific testicular 

hormones, or the female pathway in their absence. Since 
the presence of the fetal testis plays a determining role in 
the differentiation of the reproductive tract, the term "sex 
determination" has been coined to designate the 
differentiation of the gonad during early fetal development. 

 

THE BIPOTENTIAL GONAD 

 

No sexual difference can be observed in the gonads until 
the 6th week of embryonic life in humans and 11.5 days 
post-coitum (dpc) in mice. Undifferentiated gonads of XX or 
XY individuals are apparently identical and can form either 
ovaries or testes. This period is therefore called indifferent 
or bipotential stage of gonadal development. 

 

The Gonadal Ridge 

 
The urogenital ridges are the common precursors of the 

urinary and genital systems and of the adrenal cortex (1). In 

the human, they develop during the 4th week post-

fertilization at the ventral surface of the cranial 

mesonephroi, and are formed by intermediate mesoderm 

covered by coelomic epithelium. Each urogenital ridge 

divides into a urinary and an adreno-gonadal ridge in the 5th 

week (Table 1). The adreno-gonadal ridge is the common 

precursor of the gonads and adrenal cortex. The gonadal 

ridge is bipotential and can develop into an ovary or a testis. 

Gonads are subsequently colonized by the primordial germ 

cells, of extra-gonadal origin. The mesonephroi also give 

rise to components of the internal reproductive tract and of 

the urinary system. 
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The molecular mechanisms underlying the specific location 

of the gonads on the surface of the mesonephroi begin to 

be unveiled in chicken embryos, where Sonic hedgehog 

(SHH) signaling mediated by the bone morphogenetic 

protein 4 (BMP4) establishes the dorsoventral patterning of 

the mesoderm and induces coelomic epithelium cell 

ingression, thus probably initiating gonadal development 

(2). However, since there are significant differences in 

gonadal development between birds and mammals, these 

mechanisms need to be explored to establish whether they 

are conserved amongst vertebrates. 

 

TABLE 1. Chronology of Human Sex Differentiation* 

Age from conception  CR length (mm)  Event  

22 days  2-3  Intermediate mesoderm becomes visible 

Primordial germ cells in the yolk sac 

24 days  2.5-4.5  Formation of solid Wolffian ducts  

Primordial germ cells migrate to the hindgut  

26 days  3-5  Wolffian ducts develop a lumen 

Primordial germ cells in the hindgut  

28 days  4-6  Primordial germ cells migrate to the urogenital ridges 

32 days  5-7 Gonadal primordia develop  

Growth of Wolffian ducts  

33-37 days  7-11  Primordial germ cells reach gonadal ridge 

Urogenital sinus is distinguishable 

Differentiation of Müllerian ducts  

Genital tubercle and urethral folds are visible 

41-44 days  11-17 Seminiferous cord differentiation 

Differentiation between pelvic and phallic parts of the urogenital sinus 

44-50 days  15-20  Seminiferous cords with germ cells  

50-60 days  30  Beginning of secretion of AMH  

Leydig cell differentiation  

Cranial part of Müllerian ducts begins to regress  

9 weeks  40  Leydig cells produce testosterone  

Beginning of masculinization of urogenital sinus and external genitalia  

10 weeks  45-50  Meiotic entry of oocytes in the medulla  

Beginning of degeneration of female Wolffian ducts  

Male Müllerian ducts have disappeared  

Prostatic buds appear  

12 weeks  55-60  The vaginal cord is formed  

Primordial follicles appear  

Seminal vesicles develop  

Testis at internal inguinal ring  

14 weeks  70  Completion of male urethral organogenesis  

16 weeks  100  Primary follicles appear  

20 weeks  150  Testosterone serum level is low  

Formation of prostatic utricle  

22 weeks  180  Vagina reaches perineum  

24 weeks  200  Graafian follicles appear  

Beginning of penile growth  

27-30 weeks  230-265  Inguino-scrotal descent of the testis  

36 weeks  300  Secondary and tertiary follicles produce AMH  
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* According to O’Rahilly (3). 

 

Several general transcription factors belonging to the large homeobox gene family play an important role in the stabilization 

of the intermediate mesoderm and the formation of the urogenital ridges (Table 2). Mice in which Lhx1 (4), Emx2 (5, 6) or 

Pax2 (7) have been inactivated fail to develop urogenital derivatives. Most of these ubiquitous factors are essential for the 

development of other vital embryonic structures. However, another LIM homeobox gene, Lhx9, seems to be essential only 

for the proliferation of somatic cells of the gonadal ridge (8) by interacting with Wt1 to regulate Sf1 (9). LHX9 expression 

increases in both XX and XY undifferentiated gonads, and then decreases as Sertoli and granulosa cells differentiate (10, 

11). Several other factors are involved in cell proliferation in the gonadal primordium both in XX and XY embryos. For 

instance, impairment of the signaling pathway of the insulin/insulin-like growth factor family in mouse knockout models with 

disrupted Insr, Igf1r and Insrr leads to a significant reduction of the size of adreno-gonadal ridges in both XX and XY embryos 

(12). Also in mice with a knockout of Tcf21, gonads are severely hypoplastic in both XX and XY fetuses (13). GATA4 (14) 

and the homeoproteins SIX1 and SIX4 are also essential for early proliferation of gonadal precursor cells and for FOG2- 

and SF1-regulated SRY expression (15). The Notch signaling pathway is also involved in somatic cell lineage commitment 

during early gonadogenesis in mice. Conditional knockout of Numb and Numbl (antagonists of Notch signaling) in the 

undifferentiated gonad results in disruption of the coelomic epithelium and reduction of somatic cell numbers in the gonads 

(16). Finally, NRG1 is also required in a dose-dependent manner in order to induce somatic cell proliferation in the gonads 

(17). Since cell proliferation is more important in the male than in the female early developing gonad (18, 19), sex-reversal 

is often observed in XY embryos with an alteration of gonadal cell proliferation (12). It has been suggested that this is due 

to a reduction in the number of SRY-expressing pre-Sertoli cells, resulting in very low levels of SRY expression that are 

insufficient to trigger testicular differentiation (discussed in ref. (20).  

  

TABLE 2. Factors Involved in Early Gonadal Ridge Development 

Gene Chromosomal 

localization 

Expression Function 

ATRX (Alpha-

thalassemia/mental 

retardation syndrome, 

Helicase 2, X-Linked)  

Xq21.1 Widespread  Nucleotide excision repair 

and initiation of 

transcription  

CITED2 (CBP/p300-

interacting transactivator, 

with glu/asp-rich c-terminal 

domain, 2)  

6q24.1 Widespread  WT1 cofactor, regulating 

SF1 expression in the 

adrenogonadal primordium 

EMX2 (homolog of empty 

spiracles homeobox gene 

2)  

10q26.11 Telencephalon 

and epithelial 

components of the 

urogenital system  

Arealization of the 

neocortex and induction of 

the mesenchyme  

GATA4 (GATA-binding 

protein 4) 

8p23.1 Widespread Regulation of coelomic 

epithelium thickening 

INSR (Insulin receptor)  

IGF1R (Insulin growth 

factor 1 receptor)  

INSRR (Insulin receptor-

related receptor) 

19p13.2 

15q26.3 

 

1q23.1 

Widespread Metabolic, cell proliferation  

JMJD1A, or KDM3A 

(Lysine-Specific 

Demethylase 3A) 

2p11.2 Testis, ovary, 

kidney, lung, 

heart, brain, liver, 

skeletal muscle, 

Demethylases histone H3 

(epigenetic regulation by 

modification of chromatin 

conformation) 
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pancreas, and 

spleen 

LHX1 (LIM homeobox gene 

1) 

17q12 Primitive streak, 

prechordal and 

intermediate 

mesoderm, brain, 

thymus, tonsil  

Differentiation and 

development of the head, 

neural and lymphoid 

tissues and urogenital 

structures  

LHX9 (LIM homeobox gene 

9) 

1q31.3  Central nervous 

system, forelimb 

and hind limb 

mesenchyme and 

urogenital system  

Activation of SF1 in 

gonadal primordia  

NR5A1 (Nuclear receptor 

subfamily 5, group A, 

member 1, also SF1: 

Steroidogenic factor 1, or 

AD4BP: Adrenal 4 binding 

protein, or FTZF1: Fushi 

tarazu factor homolog 1) 

9q33.3 Gonadal ridges, 

adrenal gland 

primordia, 

hypothalamus and 

pituitary 

Stabilization of intermediate 

mesoderm, and 

transcriptional regulation of 

several genes (StAR, 

steroid hydroxylases, 

aromatase, AMH, DAX1 

and many other) 

NRG1 (Neuregulin 1) 8p12 Widespread, 

including 

progenitors of 

somatic gonadal 

cells 

Progenitor cell proliferation 

in the gonads 

NUMB  

and  

NUMBL 

14q24.2-q24.3 

and 

19q13.2 

Widespread, 

including coelomic 

epithelium 

Antagonize NOTCH 

signaling, involved in 

mediating asymmetric 

division of cells in the 

coelomic epithelium 

PAX2 (Paired box gene 2)  10q24.31 Mesonephros, 

metanephros, 

adrenals, spinal 

cord, hindbrain 

and optic and otic 

vesicles  

Regulation of WT1 

expression and of 

mesenchyme- to- 

epithelium transition  

SIX1 / SIX 4 (Sine oculis 

homeobox 1 and 4)  

14q23.1 Urogenital ridge 

derivatives 

Regulation of gonadal 

precursor cell proliferation, 

and of Fog2 and Sf1  

TCF21 (Transcription factor 

21, also POD1: Podocyte-

expressed 1) 

6q23.2 Epithelium of the 

developing 

gastrointestinal, 

genitourinary, and 

respiratory 

systems 

Basic helix-loop-helix 

transcription factor  

WT1 (Wilms tumor 

associated gene 1)  

11p13 Urogenital ridge 

derivatives 

DNA- and RNA-binding 

protein with transcriptional 

and post-transcriptional 

regulating capacity  
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The differentiation of the gonadal ridge from the 

intermediate mesoderm requires the expression of sufficient 

levels of WT1 and SF1. WT1 was initially isolated from 

patients with Wilms' tumor, an embryonic kidney tumor 

arising from the metanephric blastema. By alternative 

splicing and alternative translation initiation, WT1 encodes 

more than 20 isoforms of a zinc-finger protein acting as 

transcriptional and/or post-transcriptional regulator (20). 

The -KTS splicing variant of WT1, lacking the three amino 

acids lysine (K), threonine (T) and serine (S) at the end of 

the third zinc finger, is required for cell survival and 

proliferation in the indifferent gonad, whereas the +KTS 

variant is involved in the regulation of SRY expression (21). 

The first indication of a role for WT1 in gonadal and renal 

development was its expression pattern in the urogenital 

ridges (22). During gonadal differentiation, WT1 is 

expressed in the coelomic epithelium and later in Sertoli and 

granulosa cells (23). In mice with a knockout of WT1, neither 

the kidneys nor the gonads develop (24). In humans, 

mutations in the WT1 gene do not completely prevent 

urogenital ridge development but may result in gonadal 

dysgenesis associated with nephroblastoma (Wilms' tumor) 

and/or nephrotic syndrome owing to glomerular diffuse 

mesangial sclerosis (25-27). 

 

SF1, also known as Ad4BP or FTZF1 (HGNC approved 

gene symbol: NR5A1), initially described as a regulator of 

steroid hydroxylases, is an orphan nuclear receptor 

expressed in the hypothalamus, the pituitary, the gonads 

and the adrenal glands (reviewed in refs. (28-30). In mice 

with a knockout of the SF1 gene, the intermediate 

mesoderm is not stabilized and the gonadal and adrenal 

primordia soon degenerate (31). SF1 also plays an 

important role in spermatogenesis, Leydig cell function, 

ovarian follicle development and ovulation, as 

demonstrated by a gonad-specific disruption of SF1 (32). A 

recurrent heterozygous p.Arg92Trp variant of the gene is 

associated with testicular development in XX subjects (33, 

34). WT1, through interaction with CITED2 (35, 36), and 

LHX9 (8) regulate the expression of SF1 upstream of the 

gonadal development cascade. GATA4 and SOX-family 

factors also regulate SF1 expression in the gonad (28). In 

humans, the phenotype resulting from SF1 mutations does 

not exactly match that of Sf1 knockout mice: the clinical 

spectrum includes severe and partial forms of testicular 

dysgenesis, anorchidism, and even male infertility in 

normally virilized individuals; adrenal insufficiency is not 

always present. In 46,XX females, SF1 mutations have 

been described in patients with primary ovarian 

insufficiency (29, 30). SF1 is one of the increasing number 

of examples of dosage-sensitive mechanisms in human sex 

differentiation, since mutations at the heterozygous state 

are sufficient to induce sex reversal in XY individuals 

(reviewed in refs. (29, 30).  

 

Recent studies using single-cell RNA sequencing (scRNA-

seq) has shed light on the initial steps of lineage trajectories 

and cell fate in the developing gonads (1, 37). A subset of 

cells of the coelomic epithelium expressing GATA4, SF1 

and WT1 are likely to be the precursors of the somatic 

lineages of the undifferentiated gonads: both the supporting 

(Sertoli and granulosa) and the steroidogenic (Leydig and 

theca) cell populations of the differentiating gonads seem to 

derive from SF1 and WT1-expressing cells present in the 

genital ridge (1, 37, 38). 

 

The Germ Cells  

 

Initially formed exclusively by somatic cells, the gonads are 

subsequently colonized by the primordial germ cells 

(PGCs). PGCs derive from pluripotent cells of the posterior 

proximal epiblast, which move, at a very early stage of 

embryonic life, through the primitive streak into the extra-

embryonic region at the base of the allantois (39). Not all of 

these cells are committed to a germ cell lineage since they 

also give rise to extra-embryonic mesoderm cells (40).  

The mechanisms responsible for specification of epiblast 

cells to become PGCs vary between species (41-43). In 

mice, PCG specification involves several extraembryonic 

ectoderm-derived factors, including bone morphogenetic 

protein 2 (BMP2) (44), BMP4 (45-47), BMP8B (46) and 

WNT3 (48). Cells of the adjacent epiblast become 

determined to develop through the germline as they start 

expressing BLIMP1 (44), encoded by Prdm1. BLIMP1 

represses somatic fate in the epiblast cells, and together 

with PRDM14 and AP2G (encoded by Tfap2c), constitute a 

tripartite genetic network necessary and sufficient for 

mouse PGC specification (49). PRDM14 regulates the 

restoration of pluripotency and epigenetic reprogramming in 

PGCs, reestablishing the expression of the pluripotency 

factors OCT3/4 (encoded by Pou5f1), SOX2 and NANOG 

(41). 
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Instead, embryos of other mammals do not form a structure 

equivalent to the extraembryonic ectoderm, and the origin 

of the signals that initiate PGC specification remain largely 

unknown. Notably, in the human embryo, PGC-like cells 

express very low or no PRDM14, maintain NANOG 

expression, and do not express SOX2. Furthermore, the 

expression of SOX17 is detected before that of BLIMP1 and 

could be involved in the regulation of PGC specification and 

maintenance of their pluripotency in humans (49, 50). 

 

Widespread chromatin modifications are observed: PGCs 

undergo genome-wide demethylation including erasure of 

genomic imprints (44), thus reaching a ‘ground state’ in 

terms of epigenetic marks. Re-methylation of germ cell 

genome occurs later during fetal life: in XY germ cells when 

they have committed to the spermatogenic fate, and in XX 

germ cells just before ovulation (45). 

In the 4thweek, PGCs have migrated and are present in the 

yolk sac near the base of the allantois. They can be 

identified by their expression of alkaline phosphatase, 

OCT3/4 and the tyrosine kinase receptor C-KIT (Fig. 1A) 

(40). Subsequently, PGCs become embedded in the wall of 

the hind gut, gain motility and migrate through the dorsal 

mesentery to reach the gonadal ridges in the 5thweek (Fig. 

1B). Early migration of PGCs is dependent on the 

expression of interferon-induced transmembrane proteins 1 

and 3 (IFITM1 and IFITM3) in the surrounding mesoderm 

(51). During migration, PGCs proliferate actively but do not 

differentiate (40). Germ cell migration through the dorsal 

mesentery to the gonadal ridges and survival/proliferation in 

both XX and XY embryos is driven by signaling between kit 

ligand (KITL, also known as Stem cell factor [SCF], Steel 

factor or mast cell growth factor [MGF]), which is expressed 

in somatic cells of the gonadal ridge and the hind gut along 

the pathway of PGC migration, and its receptor present in 

germ cells, C-KIT (Fig. 1) (52). PGC migration and genital 

ridge colonization is also dependent on stromal cell-derived 

factor 1 (SDF1, also known as CXCL12) and its receptor 

CXCR4 (53) and on interactions with extracellular matrix 

proteins, like fibronectin and laminin, while proliferation 

and/or survival involve many other factors (39, 40, 52, 54). 

 

PGCs are in a bipotential state when they colonize the 

gonadal ridges, i.e. they still have the capacity to enter 

either spermatogenesis or oogenesis. Shortly afterwards, 

induced by the gonadal environment, PGCs begin to 

express DAZL, DDX4 (also known as MVH) and low levels 

of SYCP3 (43), probably owing to promoter demethylation 

(55). DAZL seems to induce PGCs capacity to respond to 

specific male or female gonadal signals (56, 57). 
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FIGURE 1. REGULATION OF GERM CELL MIGRATION. A: 4-WEEK EMBRYO. DIFFERENTIATION OF PRIMORDIAL 

GERM CELLS (PGC) OCCURS FROM EPIBLAST-DERIVED CELLS PRESENT IN THE YOLK SAC NEAR THE BASE 

OF THE ALLANTOIS. PGCS EXPRESS PMRD1, THE RECEPTORS C-KIT AND CXCR4, OCT3/4 AND ALKALINE 

PHOSPHATASE. FIBRONECTIN AND LAMININ, TOGETHER WITH KITL, SDF1 AND IFITM 1 AND 3 ARE 

EXPRESSED IN THE MESODERM ALONG THE PGC PATHWAY. B: 5-WEEK EMBRYO. PGCS MIGRATE ALONG 

THE DORSAL MESENTERY OF THE HIND GUT TO THE GONADAL RIDGES. 

 

SEX DETERMINATION 

 

The Determining Role of Testicular 

Differentiation 

 

The pioneering experiments of fetal sexual differentiation 

carried out by Alfred Jost in the 1940’s clearly established 

that the existence of the testes determines the sexually 

dimorphic fate of the internal and external genitalia (Fig. 2) 

(58, 59). Irrespective of their chromosomal constitution, 

when the gonadal primordia differentiate into testes, all 

internal and external genitalia develop following the male 

pathway. When no testes are present, the genitalia develop 

along the female pathway. The existence of ovaries has no 

effect on fetal differentiation of the genitalia. The paramount 

importance of testicular differentiation for fetal sex 

development has prompted the use of the expression “sex 

determination” to refer to the differentiation of the bipotential 

or primitive gonads into testes.  

 

In the next section, we describe the morphological aspects 

of fetal testicular and ovarian differentiation and the 

underlying molecular mechanisms, involving genes 

mapping to sex-chromosomes (Fig. 3) and autosomes 

(Table 3). 
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FIGURE 2. Determining role of the testes in fetal sex differentiation. In normal females, 

Müllerian ducts are maintained, Wolffian ducts regress. In males, the opposite occurs. In 

castrated fetuses, irrespective of genetic or gonadal sex, the reproductive tract differentiates 

according to the female pattern. 

 

The Fate of the Undifferentiated Gonadal 

Ridge 
 

As already mentioned, the gonadal ridges are bipotential 

until the 6th week after conception in humans, i.e. they have 

the capacity to follow the testicular and the ovarian 

pathways. The discovery of the testis-determining factor 

SRY in 1990 was followed by the progressive unveiling of 

robust networks of genes, whose balanced expression 

levels either activate the testis pathway and simultaneously 

repress the ovarian pathway or vice versa (Fig. 4). During 

the formation of the undifferentiated gonadal ridges, a 

common genetic program is established in the supporting-

cell lineage deriving from the multipotent somatic progenitor 

cells in both XX and XY embryos, characterized by a 

balanced expression of pro-Sertoli (SOX9, FGF9, PGD2) 

and pregranulosa (WNT4, RSPO1, FST and CTNNB1) 

genes (37, 60). Under physiological conditions in the XY 

gonad, the upregulation of SRY induces a destabilization of 

that balance, initiating the testis cascade. 

 

THE MALE DETERMINING PATHWAY 
 

Sex-Determining Region on the Y Chromosome (SRY) 

 

Compelling evidence for the importance of the Y 

chromosome for the development of the testes, irrespective 

of the number of X chromosomes present, has existed since 

1959 (61, 62). However, the identification of the testis-

determining factor (TDF) on the Y chromosome did not 

prove easy and several candidates (e.g. HY antigen, ZFY) 

were successively proposed and rejected until the SRY 

(Sex-determining region on the Y) gene was cloned in 1990 

in man (63) and mouse (64). Experimental (65, 66) and 

clinical (67, 68) evidence clearly established that SRY was 

the testis-determining factor. Considerable progress has 

been made since SRY was identified, and it has become 
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clear that sex determination is a far more complex process, 

regulated by competing molecular pathways in the 

supporting cell lineage of the bipotential gonad. SRY has 

lost much of its prestige because it has a very weak 

transactivation potential, is expressed very transiently in the 

mouse, weakly at best in other mammals and not at all in 

sub-mammalian species (reviewed in ref. (20). Instead, its 

target gene encoding the transcription factor SOX9 has 

emerged as the master regulator of testis determination, the 

main role of SRY consisting in upregulating the expression 

of SOX9 during a very narrow critical time window (69). 

Once time is up, either SOX9 is able to maintain its own 

expression with the help of feed-forward enhancing 

mechanisms succeeding in triggering Sertoli cell 

differentiation or it is silenced by an opposing set of genes 

which impose ovarian differentiation. Timing and expression 

level determine which team wins (20, 70, 71) but the battle 

is never over, even after birth, at least in mice (72). 

 

SRY is a member of a family of DNA-binding proteins 

bearing a high mobility group (HMG) box; its gene maps to 

the short arm of the Y chromosome (Table 3), very close to 

the pseudoautosomal region 1 (PAR1) (Fig. 3). PAR1 on Yp 

and PAR2 on Yq are the only regions of the Y chromosome 

that undergo meiotic recombination with homologous 

sequences of the X chromosome during male 

spermatogenesis. The proximity of SRY to PAR1 makes it 

susceptible to translocation to the X chromosome following 

aberrant recombination and provides an explanation for 

80% of XX males (73) and for a low proportion of XY 

females. Indeed, mutations and deletions of the SRY locus 

only account for 15% of XY females (74, 75). 

  

While SRY gene exists in almost all mammals as a single 

copy gene, the rat carries 6 copies and the mouse Sry gene 

has a distinct structure from other mammalian SRY genes 

because of the presence of a long-inverted repeat. Also, 

SRY expression varies between species: in mice a 

functional transcript is present only in pre-Sertoli cells for a 

very short period during early gonadogenesis, in goats SRY 

is expressed in all somatic and germ cells of the gonad 

during fetal life and restricted to Sertoli cells and 

spermatogonia in the adult testis. Human SRY is expressed 

in both Sertoli cells and germ cells at fetal and adult stages 

(reviewed in ref. (20). Proteins that interact with SRY and 

could have a relevant function in gonadal differentiation 

include SIP-1/NHERF2 (76) and KRAB-O (77). 
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FIGURE 3. X and Y chromosome genes involved in sex determination and differentiation. 

SRY: Sex-determining region Y chromosome; DAX1: DSS-AHC critical region X chromosome gene 1; AR: 

Androgen receptor; and ATRX: Alpha-thalassemia/mental retardation syndrome X-linked are involved in in sex 

determination and differentiation. Other genes present in the X and Y chromosomes are: AZF: azoospermia 

factor; CSF2RA: Colony-stimulating factor 2 receptor alpha; DAZ: Deleted in azoospermia; FRA-X: Fragile X 

syndrome; DMD: Duchenne muscular dystrophy; GK: Glycerol kinase; HY: Histocompatibility antigen Y; IL3RA: 

Interleukin 3 receptor alpha; IL9R: Interleukin 9 receptor; Kal1: Kallmann syndrome 1; PAR: Pseudo-autosomal 

regions; POLA: DNA polymerase alpha; RBMY: RNA-binding motif protein Y chromosome; SHOX: Short stature 

homeo box; USP9Y: Ubiquitin-specific protease 9 Y chromosome; XIST: X inactivation-specific transcript; ZFX: 

Zinc finger protein X-linked; ZFY: Zinc finger protein Y-linked. 

 

Owing to its Y-chromosome localization, SRY can only be 

expressed in the XY gonadal ridge, thus playing a 

paramount role in tilting the balance between testicular and 

ovarian promoting genes towards the male pathway. 

 

A tight regulation of SRY expression is essential for fetal 

gonadogenesis: both timing and level of expression are 

determinant, as revealed by experiments in mouse showing 

that SRY levels must reach a certain threshold at a certain 

stage of fetal development to induce testis differentiation 

(69). SRY expression commences between days 41 and 44 

post-fertilization in humans (78). The mechanisms 

underlying the initiation of SRY expression begin to be 

unraveled (Fig. 4). The +KTS splice variant of WT1 (21, 79, 

80), SF1 (20) and SP1 (81, 82) are able to activate SRY 

transcription. The transcriptional co-factor CITED2 acts in 

the gonad with WT1 and SF1 to increase SRY levels to 

attain a critical threshold to efficiently initiate testis 

development (35). The +KTS isoform of WT1 might also act 

as a posttranscriptional stabilizer of SRY mRNA (70). 

 

The implication of GATA4 on SRY expression is less 

straightforward. The interaction between GATA4 and its 

cofactor FOG2 in the gonadal primordium is required for 
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normal Sry expression and testicular differentiation in mice 

(83). However, whether the effect is specific on Sry 

transcription or more general on gonadal somatic cell 

development was not evaluated. Functional GATA-binding 

sites are present in the mouse and pig Sry promoter but not 

in the human SRY (84, 85). One possibility is that GATA4 

interacts with WT1 (Fig. 4), mainly the +KTS isoform, which 

binds to the SRY promoter and increases its transcriptional 

activity (84). Alternatively, it has been proposed that GATA4 

directly acts on the SRY promoter, based on the 

experimental observation that GADD45G binds and 

activates the mitogen-activated protein kinase kinase 

MAP3K4 (also known as MEKK4) to promote 

phosphorylation and activation of the p38 kinase (Table 3), 

which in turn phosphorylates GATA4 thus enhancing its 

binding to the Sry promoter (85, 86) (Fig. 4). These results 

are in line with those indicating that MAP3K4 is essential for 

testicular differentiation in mice (87). 

 

SRY expression is also epigenetically regulated: the 

demethylase KDM3A, also known as JMJD1A, positively 

regulates the expression of Sry in mice, as shown by the 

absence of testicular development and consequent sex 

reversal in Jmjd1a-deficient XY mice (88). Histone 

methylation is an important mechanism of epigenetic 

regulation: methylation of lysine 9 of histone H3 (H3K9) is a 

hallmark of transcriptionally suppressed chromatin. 

JMJD1A demethylates H3K9, thus allowing transcriptional 

activation of Y chromosome genes, amongst which is SRY. 

ATRX, also known as XH2, is an X-encoded DNA-helicase 

whose mutation results in mental retardation, α-thalassemia 

and gonadal dysgenesis in XY individuals (89-91). ATRX 

has a more general effect on chromatin remodeling, which 

seems to play an important role in the epigenetic regulation 

of sex determination (92). 

 

Several other experimental models impairing the 

expression of signaling molecules, which are expressed 

SRY in the early gonadal ridge in normal conditions, show 

reduced or absent SRY expression, develop gonadal 

agenesis and a female phenotype of the internal and 

external genitalia. LHX9 (8) is a potential regulator of SRY 

expression. A direct effect of LHX9 on the SRY gene has 

not been demonstrated but an indirect effect through SF1 

upregulation has been postulated (20). Loss-of-function 

mutations of the mouse genes encoding the insulin receptor 

(Insr), the IGF1 receptor (Igf1r) and the insulin related 

receptor (Insrr) also result in decreased or absent Sry 

expression (12). However, these factors and signaling 

pathways affect cell proliferation, and decreased SRY 

expression might only reflect the reduced number of cells in 

the gonadal primordium. Indeed, many of these potential 

regulators have not yet been proven to affect SRY 

expression directly.  

 

TABLE 3. Factors Involved in Gonadal Differentiation 

Gene Chromosomal 

localization 

Expression Function 

ATRX (Alpha-

thalassemia/mental 

retardation syndrome, 

Helicase 2, X-Linked)  

Xq21.1 Widespread  Nucleotide excision repair and 

initiation of transcription  

CBX2 (Chromobox 

homolog gene 2; or M33 

mouse homolog of) 

17q25.3 Widespread  Regulation of homeotic genes. 

Represses WNT4 signaling 

CITED2 (CBP/p300-

interacting transactivator, 

with glu/asp-rich c-terminal 

domain, 2)  

6q24.1 Widespread  WT1 and SF1 cofactor, regulating 

SRY expression in the gonad 

COUP-TF2 (Chicken 

ovalbumin upstream 

promoter transcription 

factor 2), or NR2F2 

(Nuclear receptor subfamily 

2, group F, member 2) 

15q26.2 Widespread Transcription factor (orphan 

nuclear receptor) likely involved 

in mesenchymal-epithelial 

interactions 
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CTNNB1 (β-catenin) 3p22.1 Widespread Upregulates WNT4, FST and 

FOXL2 

DAX1: DSS-AHC critical 

region on the X 

chromosome 1); or NR0B1 

(Nuclear receptor subfamily 

0, group B, member 1). 

Xp21.2 Gonads, 

pituitary, 

adrenals 

Antagonizes SRY, SOX9. 

Essential for normal testicular 

and ovarian development 

DHH (Desert hedgehog) 12q13.12 Sertoli cells 

(testis), 

Schwann 

cells 

(peripheral 

nerves) 

Morphogenesis 

DKK1 (Dickkopf, xenopus, 

homolog of, 1) 

10q21.1 Widespread Represses WNT4 binding to the 

LRP5/6 co-receptor 

DMRT1 (Doublesex- and 

mab3-related transcription 

factor 1) 

9p24.3 Gonads and 

several other 

tissues 

Antagonizes FOXL2 

FGF9 (Fibroblast growth 

factor 9) 

13q12.11 Gonads and 

several other 

tissues 

Upregulation of SOX9 and 

downregulation of WNT4 

FGFR2 (FGF receptor 2) 10q26.13 Gonads and 

several other 

tissues 

Upregulation of SOX9 and 

downregulation of WNT4 

FOG2 (Friend of GATA, 

gene 2, or ZFPM2: zinc 

finger protein multitype 2) 

8q23.1 Widespread  Repression of DKK1 

FOXL2 (Forkhead 

transcription factor 2) 

3q22.3 Gonads and 

eyelids 

Antagonizes SOX9. Survival of 

meiotic germ cells 

FST (Follistatin) 5q11.2 Widespread Antagonizes Activins. Survival of 

meiotic germ cells 

GADD45G (Growth arrest- 

and DNA damage-inducible 

gene, gamma) 

9q22.2 Widespread Phosphorylation of GATA4 

GATA4 (GATA-binding 

protein 4) 

8p23.1 Widespread Regulation of SRY expression 

HHAT (Hedgehog 

acyltransferase) 

1q32.2 Gonads Two INHBB subunits form Activin 

B dimer, which induces vascular 

endothelial cell migration to the 

gonad 

INHBB (Inhibin βB, Activin 

βB) 

2q14.2 Gonads Two INHBB subunits form Activin 

B dimer, which induces vascular 

endothelial cell migration to the 

gonad 

JMJD1A; or KDM3A 

(Lysin-specific demethylase 

3A) 

2p11.2 Testis, ovary, 

kidney, lung, 

heart, brain, 

Demethylases histone H3 

(epigenetic regulation by 
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liver, skeletal 

muscle, 

pancreas, 

and spleen 

modification of chromatin 

conformation) 

MAP3K1 (MAP/ERK 

Kinase Kinase 1; MEKK1; 

MAPKKK1; MEK Kinase) 

5q11.2 Widespread Phosphorylation of GATA4 

MAPK14 (Mitogen-

activated protein kinase 14; 

or p38-MAPK) 

6p21.31 Widespread Phosphorylation of GATA4 

NR5A1 (Nuclear receptor 

subfamily 5, group A, 

member 1, also SF1: 

Steroidogenic factor 1, or 

AD4BP: Adrenal 4 binding 

protein, or FTZF1: Fushi 

tarazu factor homolog 1) 

9q33.3 Gonadal 

ridges, 

adrenal gland 

primordia, 

hypothalamus 

and pituitary 

Transcriptional regulation of 

several genes (SRY, SOX9, 

STAR, steroid hydroxylases, 

aromatase, AMH, DAX1 and 

many other) 

PDGFB (Platelet-derived 

growth factor, beta 

polypeptide) 

22q13.1 Endothelial 

cells 

Increase in cell proliferation in the 

gonadal interstitial tissue 

PDGFRA (PDGF receptor 

α) 

4q12 Gonadal 

interstitial 

cells and 

several other 

tissues 

Increase in cell proliferation in the 

gonadal interstitial tissue 

PTGDS (or PGDS2: 

Prostaglandin D2 synthase) 

9q34.3 Gonads and 

several other 

tissues 

Synthesis of prostaglandin D2 

(PGD2), upregulation of SOX9 

and its nuclear translocation 

RSPO1 (R-spondin family, 

member 1) 

1p34.3 Gonads and 

skin 

Upregulates WNT4 by 

sequestering the transmembrane 

E3 ubiquitin ligases ZNRF3 and 

RNF43. 

Cooperates with WNT4 signaling, 

by antagonizing DKK1, to 

stabilize β-catenin and FST 

SOX8 (SRY box 8)  16p13.3 Gonads and 

several other 

tissues 

Transcriptional regulation of 

SOX9, in cooperation with SF1 

SOX9 (SRY box 9)  17q24.3 Testis, 

cartilage 

Triggers testis differentiation, and 

regulates several testis-specific 

genes 

SOX10 (SRY box 10) 22q13.1 Gonads and 

several other 

tissues 

Transcriptional regulation of 

SOX9, in cooperation with SF1 

SP1 (Specificity protein 1)  12q.13.13 Widespread Regulation of SRY expression  
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SRY (Sex-determining 

region on the Y 

chromosome) 

Yp11.31 Male gonadal 

ridge 

Regulates SOX9 and triggers 

testis differentiation 

VEGFA (Vascular 

endothelial growth factor A) 

6p21.1 Mesenchymal 

cells of the 

gonadal ridge 

and other 

organs 

Induces vascular endothelial cell 

migration to the gonad 

WNT4 (Wingless-type 

MMTV integration site 

family, member 4) 

1p36.12 Gonads and 

several other 

tissues 

Induces β-catenin and silences 

FGF9 and SOX9 by binding to 

Frizzled receptor 

WT1 (Wilms tumor 

associated gene 1)  

11p13 Urogenital 

ridge 

derivatives 

Transcriptional regulation and 

post-transcriptional stabilization 

of SRY 

ZNRF3 (Zinc finger and ring 

finger protein 3) 

22q12.1 Widespread  Inhibition of WNT signaling by 

targeting Frizzled receptor for 

degradation by ubiquitination and 

increased membrane turnover 

 

SOX9: A Target of SRY 

 

SOX9, an autosomal member of the HMG-box protein 

superfamily mapped to chromosome 17 q24 (93), is the 

master regulator of Sertoli cell differentiation (94). In the 

mouse, SOX9 is expressed at low levels in the bipotential 

gonads of both sexes under SF1 regulation (95), but 

persists only in testicular Sertoli cells after SRY expression 

has peaked (96-98). SRY and SF1 directly bind to several 

sites within a 3.2-kb testis-specific enhancer (TES) or 1.4-

kb of its core element (TESCO), present approximately 14 

kb upstream of the Sox9 promoter and responsible for this 

expression pattern (95, 99). Together with SF1, SOX9 also 

binds and activates TES, thus maintaining its own 

expression by autoregulation after transient SRY 

expression has ceased in the mouse. 

 

SOX9 mimics SRY effects independently of SRY 

expression. In fact, overexpression of SOX9 during early 

embryogenesis induces testicular differentiation in two 

different models of transgenic XX mice (100, 101). 

Functional analysis of SOX9 during sex determination, by 

conditional gene targeting in mice, has shown that 

homozygous deletion of Sox9 in XY gonads interferes with 

sex cord development and with activation of testis specific 

markers (102). Further evidence for the role of SOX9 in 

testicular development comes from observations in 

humans, in whom a double dose of SOX9 expression is 

required. Heterozygous mutations result in 

haploinsufficiency resulting in campomelic dysplasia, a 

polymalformative syndrome that includes sex-reversal due 

to gonadal dysgenesis in XY individuals (93, 103), whereas 

gain-of-function of SOX9 in XX individuals leads to sex 

reversal (104). 

 

In humans more distant regulatory regions of SOX9 have 

been identified (105), and confirmed by observations in 

patients with XY gonadal dysgenesis. No mutation has been 

found in the TES sequence (106), instead a 1.9 kb SRY-

responsive subfragment of a 32.5 kb interval lying 607.1–

639.6 kb upstream of SOX9 —termed XY SR for XY Sex 

Reversal— seems to be the core of the Sertoli-cell 

enhancer of human SOX9. Heterozygous deletions 

encompassing these sequences were identified in four 

families with SRY-positive 46,XY gonadal dysgenesis 

without campomelic dysplasia (107) and a deletion of a 

557–base pair element named enhancer 13 (Enh13), 

reproduced in mice, led to XY sex reversal (108). This 

region is included in a 1.2-Mb deletion previously described 

in a case of 46,XY DSD with gonadal dysgenesis and no 

skeletal phenotype (109). Finally, in line with these 

observations, overexpression of SOX9 is supposed to 

underlie testicular development in familial 46,XX SRY-

negative males with a 178-kb duplication or a 96-kb 

triplication in sequences lying 500–600 kb upstream of 

SOX9 (110, 111). 

SOX9 also affects the differentiation of the reproductive 

tract by upregulating the expression of anti-Müllerian 
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hormone (AMH) (112, 113), a Sertoli cell factor involved in 

male differentiation of the internal genitalia (see below). 

 

SOX8 and SOX10 are two other members of the SOX family 

expressed in the gonads and in several other tissues. 

During mouse embryo development, the expression of 

SOX8 and SOX10 is triggered shortly after that of SOX9, 

but at lower level (114-117). SOX8 is regulated by SOX9 

(102). Like SOX9 itself, SOX8 and SOX10 can synergize 

with SF1 and upregulate SOX9 expression (Fig. 4) upon 

binding to TESCO (20). SOX8 can bind the canonical target 

DNA sequences and activate AMH transcription acting 

synergistically with SF1, but with less efficiency than SOX9 

(114, 118). Later during fetal development, an interaction 

between SOX9 and SOX8 is required for basal lamina 

integrity of testis cords and for suppression of FOXL2, two 

events essential to the normal development of testis cords 

(117). 

 

An X-linked member of the SOX family, SOX3, although not 

involved in the normal pathway of fetal gonadal 

differentiation, is capable of inducing SOX9 expression and 

testis differentiation when ectopically expressed in the XX 

gonad (119). It is also possible that indirect mechanisms 

mediate Sox9 activation, in line with the hypothesis 

indicating that SRY might act as a repressor of a negative 

regulator of the male cascade (120). For instance, targeted 

disruption of Foxl2 leads to SOX9 upregulation in the XX 

gonad (121), and prostaglandin D2 (PGD2) has been 

shown to upregulate SOX9 in the absence of SRY (122). 

 

SOX9 expression is maintained at high levels in the male 

gonad despite down-regulation of SRY soon after testicular 

determination, at least in the mouse (97, 98). As mentioned, 

SOX9 is capable of autoregulating its expression (95), and 

other members of the SOX family like SOX3, SOX8 and 

SOX10 are also able to interact with SF1 to maintain SOX9 

expression in the male gonad (20, 117). 

 

Observations made in XY intersex patients with normal SRY 

together with the discovery of proteins showing a sexually 

dimorphic pattern of expression in the gonads following 

SRY peak have helped to identify other loci, likely to be 

involved in testicular differentiation, which are discussed 

below. 

 

FGF9 and PGD2: Maintaining SOX9 Expression Levels 

 

SOX9 upregulates the expression of FGF9 and the 

synthesis of prostaglandin D2 (PGD2) catalyzed by PGD 

synthase. FGF9 interacts with its receptor FGFR2, initiating 

a feed-forward loop that maintains SOX9 expression and 

also results in downregulation of WNT4 expression (123-

126) (Fig. 4). Independently of FGF9, PGD2 interacts with 

its receptor DP to induce SOX9 expression (122, 127) and 

its nuclear translocation (127, 128), thus increasing its 

availability to target genes (80). 
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FIGURE 4. Schematic representation of molecular mechanisms involved in determining the fate of the 

undifferentiated gonadal ridge. Black arrows indicate a positive regulation; double arrows indicate a positive 

feedback loop; red lines indicate a negative regulation; double red lines indicate a mutual antagonism. In the 6th 

week of embryonic life, the gonadal ridge is sexually undifferentiated, and various factors are expressed at the 

same levels in the XX and the XY gonads. During the 7th week, in the XY gonad, SRY expression is triggered, and 

the male pathway prevails driving to the formation of the coelomic vessel. In the XX gonad, the female pathway 

prevails, and there is no formation of the coelomic vessel. Reprinted with permission from ref. (129) Freire AV, 

Ropelato MG, Rey R. Ovaries and Testes. In: Kovacs C, Deal C, Eds. Maternal-Fetal and Neonatal Endocrinology. 

1st Edition. Boston: Academic Press-Elsevier, 2020, pp. 625-641. ISBN 9780128148235. Copyright © 2020 Elsevier 

Inc. 

 

As already discussed, somatic cell proliferation is critical for 

early testicular differentiation (18). FGF9 and WNT4 act as 

antagonistic signals in the first steps of differentiation of the 

gonadal ridge (130). FGF9 controls cell proliferation in a 

sexually dimorphic fashion: the disruption of FGF9 

expression by targeted deletion in transgenic mice does not 

affect XX gonads but prevents testicular differentiation and 

results in sex reversal in XY mice (131). In the mouse, FGF9 

and WNT4 are expressed in the undifferentiated XX and XY 

gonads at the same levels: FGF9 near the coelomic surface 

and WNT4 near the mesonephric border (130). When SRY 

expression is initiated and upregulates SOX9 in the XY 

gonadal ridge, the balance between FGF9 and WNT4 is 

disrupted: SOX9 enhances FGF9 expression which in turn 

maintains high SOX9 levels thus resulting in a feed-forward 

loop that accelerates commitment to the male pathway. 

WNT4 expression is downregulated when a threshold level 

of FGF9 is reached (130). FGF9 controls the proliferation of 
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a cell population that gives rise to Sertoli progenitors (19). 

In Fgf9 knockout mice, initial Sertoli cell differentiation is not 

hindered: SRY and SOX9 expression is observed but soon 

weakens resulting in an aborted differentiation of Sertoli cell 

precursors (130). Although in experimental conditions, 

FGF9 is capable of inducing proliferation of coelomic 

epithelium cells in XX gonadal ridges, this does not result in 

Sertoli cell differentiation, clearly indicating that increasing 

cell proliferation is not sufficient to induce testicular 

differentiation, and that other pro-testicular signals are also 

required (131). FGF9 and SOX9 also upregulate AXIN1 and 

GSK3β, which promote the destabilization of β-catenin and, 

thus, serve to block ovarian development (132). 

 

DMRT1, DAX1 and Other Factors Modulating Testis 

Versus Ovary Antagonism 

  

DMRT1 is a member of the DM domain transcription factor 

family which appears to play a conserved role in vertebrate 

male gonad development. In mice, DMRT1 –but not DMRT2 

or DMRT3– is expressed and required in both germ cells 

and Sertoli cells of the testis (133). Overexpression of 

DMRT1 in XX mice inhibits WNT4 and FOXL2 expression 

and results in partial testicular differentiation and male 

genital development (134), while loss of DMRT1 expression 

activates FOXL2 and reprograms Sertoli cells into 

granulosa cells, even in postnatal life, suggesting that 

DMRT1 is essential to maintain mammalian testis 

differentiation life-long in mice (135, 136). 

 

In humans, deletions of chromosome 9p involving DMRT1, 

DMRT2 and DMRT3 genes are associated with XY male-

to-female sex reversal due to gonadal dysgenesis. Patients 

also present with mental retardation and typical craniofacial 

dysmorphia, including trigonocephaly, upward-slanting 

palpebral fissures, and less frequently hypertelorism, 

epicanthus, flat nasal bridge, low-set ears, microstomia, 

micrognathia, short neck, widely spaced nipples, square 

hyperconvex nails, dolichomesophalangy and hypotonia 

(137, 138).  

 

DAX1 (HGNC approved gene symbol: NR0B1), encoding 

for an orphan nuclear receptor and mapping to the DSS 

(Dosage Sensitive Sex-reversal) region on Xp21, was the 

first putative testis repressor and/or ovarian determining 

gene. A duplication of DSS results in sex-reversal in 46,XY 

patients (139), and DAX1 overexpression in transgenic XY 

mice impairs testis differentiation by antagonizing the ability 

of SF1 to synergize with SRY action on SOX9 (140, 141) 

(Fig. 4). However, the disruption of Dax1 gene in XX mice 

does not prevent ovarian differentiation (142). Furthermore, 

DAX1 is essential for normal testicular cord formation (143, 

144). These observations in rodent models, together with 

DAX1 expression pattern in the human fetus showing 

persistently low levels in both XX and XY gonads from 33 

days post-fertilization (i.e. the bipotential stage) through 15 

fetal weeks (78), strongly suggest that low DAX1 levels are 

necessary for gonadal development in both sexes. 

Abnormally low or high DAX1 expression result in abnormal 

gonadal differentiation (145).  

 

CBX2, the human homolog of murine M33 (146), does not 

seem to activate SRY expression as initially proposed 

(147), but may act as a stabilizer of SRY action and the 

testis pathway by repressing WNT4 downstream target 

LEF1, involved in ovarian differentiation (148). Interestingly, 

biallelic mutations in CBX2 were found in a 46,XY girl with 

ovarian tissue (149), and XY mice with inactivated Cbx2 

developed as female (146). 

 

MAP3K1, unlike MAP3K4 (87), is not essential for testicular 

differentiation and development in mice (150), but it 

modulates the balance between testicular and ovarian male 

pathways by sequestration of AXIN1 (see “Genetic 

pathways of ovarian differentiation”). In humans, mutations 

in the MAP3K1 gene have been associated with testicular 

dysgenesis (151, 152). 

 

Similarly, inactivating variants that disrupt ZNRF3 function 

result in 46,XY DSD in humans and to sex reversal in mice, 

likely due to gonadal dysgenesis (153).ZNRF3 is an E3 

ubiquitin ligase that promotes the degradation by 

ubiquitination and the turnover of Frizzled, a WNT receptor 

(Fig. 5) (154, 155). 
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FIGURE 5. WNT and RSPO actions. Under steady state conditions (red dotted arrows), ZNRF3 provokes the 

ubiquitination and degradation of Frizzled, receptor of WNT family factors. GSK3 phosphorylates β-catenin, 

which is then degraded. R-spondin (RSPO) family members binding to their receptors LGR4/5/6 results in 

complex formation with ZNRF3. Consequently, more Frizzled molecules become available for WNT signaling. 

Under these conditions (blue full arrows), the complex formed by GSK3, Axin, CKIα and APC is recruited to the 

WNT–receptor complex and inactivated, allowing β‑catenin to translocate to the nucleus and regulate target 

genes. 

 

COUP-TF2, encoded by NR2F2, is a transcription factor 

likely involved in mesenchymal-epithelial interactions 

required for organogenesis. In the fetal gonads, COUP-TF2 

expression increases as the ovaries develop, and loss-of-

function mutations in NR2F2 have been described in 46,XX 

ovotesticular SRY-negative DSD (156), indicating that 

COUP-TF2 may be involved in driving the balance towards 

ovarian differentiation. 

 

MAMLD1 is expressed in fetal Sertoli and Leydig cells, 

under the control of SF1 (157, 158), and gene variants have 

been associated with a broad phenotypic spectrum of DSD 

(159). However, Mamld1 knockout mice depict a very mild 

reproductive phenotype (160). The precise role of MAMLD1 

still needs to be established. 

 

Stabilization of Testis Differentiation: 

Vascular, Cellular and Molecular Pathways  
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In the XY fetus, the initially amorphous cluster of gonadal 

cells becomes segregated in two compartments, testicular 

cords and interstitial tissue, during the 7th week of gestation 

(3). These architectural changes are heralded by gonadal 

ridge vascularization, a highly dynamic and sexually 

dimorphic process. At variance with the differentiating ovary 

that recruits vasculature by typical angiogenesis, the XY 

gonad recruits and patterns vasculature by a remodeling 

mechanism: pre-existing mesonephric vessels disassemble 

and generate a population of endothelial cells that migrate 

to the gonad, below the coelomic epithelium, where they 

reaggregate to form the coelomic vessel, an arterial vessel 

that runs the length of the testis at its antimesonephric 

margin (161, 162). The formation of this vessel is one of the 

earliest hallmarks of testis development that distinguishes it 

morphologically from the developing ovary (161, 163). 

Evidence now exists for a close spatial relationship between 

testis vascularization and cord formation (162, 164). 

Furthermore, all of the cells migrating from the 

mesonephros to the coelomic zone of the differentiating 

testis express endothelial markers such as VE-cadherin, an 

indication that incoming endothelial, rather than peritubular 

myoid cells, are required for testicular cord formation (164). 

Subsequently, Sertoli cells aggregate and enclose germ 

cells. The interaction between differentiating peritubular 

myoid cells and Sertoli cells results in the formation of 

basement membrane of the testicular cords. Mesenchymal 

cells and matrix and blood vessels fill the interstitial space, 

in which Leydig cells will soon appear. Beyond 

vascularization, which is necessary to allow efficient export 

of testosterone, cell migration from the mesonephros largely 

contributes to testicular organogenesis (165, 166) and is 

antagonized by the initiation of meiosis in germ cells (167). 

 

The molecular mechanisms underlying sex-specific 

gonadal vascularization are being progressively unraveled. 

A vascular-mesenchymal cross-talk between VEGFs and 

PDGFs drives gonadal patterning during early fetal life (Fig. 

4). VEGF-A, expressed in interstitial mesenchymal cells of 

the undifferentiated gonadal ridge, induces vascular 

endothelial cell migration to the gonad. In turn, PDGF-B 

expressed by the endothelial cells is responsible for an 

increase in cell proliferation in the gonadal interstitium, upon 

binding to its receptor PDGFRα. Disruption of vascular 

development blocks formation of testis cords (168, 169) 

while not affecting Sertoli and Leydig cell specification(169). 

In the XX gonadal ridge, WNT4 and its downstream target 

follistatin (FST) repress endothelial cell migration, probably 

by antagonizing Activin B (Fig. 4). In the XY gonad, the 

SRY/SOX9 pathway downregulates WNT4/FST thus 

allowing Activin B, VEGF and other potential as yet 

unidentified factors to induce male-specific gonadal 

vascularization (170). Genes involved in male sex 

determination are shown in Fig. 6. 
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FIGURE 6. Sex determination and differentiation. Reprinted with permission from ref. (171): Grinspon RP, Rey RA 

Molecular Characterization of XX Maleness. International Journal of Molecular Sciences (2019) 20:6089, © 2019 by 

the authors. Licensee MDPI, Basel, Switzerland. 

 

Differentiation of Sertoli and Leydig Cells  

 

As already mentioned, both the supporting and the 

steroidogenic cell lineages derive from WT1-positive 

somatic progenitors present in the undifferentiated gonadal 

ridges. Wt1-positive cells can express HES1, a Notch 

effector, or not (38). In the subset of WT1-positive and 

HES1-negative cells, having delaminated from the coelomic 

epithelium in the central part of the indifferent gonad, SRY 

expression is induced giving rise to the supporting cell 

lineage (pre-Sertoli cells) (38, 172-174). SRY-expressing 

pre-Sertoli cells lying beneath the coelomic epithelium play 

a central role in the migration of cells from the mesonephric 

mesenchyme into the differentiating gonad (175). 

Experimental work using XX-XY chimeras has shown that 

not 100% of Sertoli cell precursors need to express SRY to 

differentiate along the male pathway: in fact, up to 10% of 

Sertoli cells were XX. However, a threshold number of SRY 

expressing –i.e. XY– cells seems to be essential in order for 
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Sertoli cell differentiation, and thus testicular development, 

to be guaranteed (176). 

 

Along with SRY, FGF9 might have a role in inducing 

mesonephric cell migration into the developing fetal testis 

and Sertoli cell differentiation. FGF9 is expressed in Sertoli 

cells of the fetal testis and Fgf9-null mice have dysgenetic 

gonads (131, 177) (see below).  

 

Vanin-1, a cell-surface molecule involved in the regulation 

of cell migration, might also be responsible for differentiating 

Sertoli cell association with, and adhesion to, migrating 

peritubular cells (178). Nexin-1, expressed by early Sertoli 

cells, could act to maintain the integrity of the basal lamina 

(178). 

 

Desert hedgehog (DHH) and its receptor PATCHED2 might 

also play a role in Sertoli-peritubular cell interaction and 

basal lamina deposition (179, 180). DHH is a protein 

secreted by fetal Sertoli cells, but not by somatic 

components of the fetal ovary, immediately after testicular 

determination (181). Patched2 is expressed in germ, 

peritubular and interstitial cells of the testis (182). Testes 

develop abnormally during fetal life in Dhh null mice, 

resulting in XY sex-reversal. Seminiferous cords are 

disorganized owing to defects in the basal lamina and 

peritubular cells, with germ cells occasionally lying in the 

interstitial tissue, and Leydig cells are hypoplastic (179, 

180). Homozygous mutations of DHH in 46,XY patients are 

associated with gonadal dysgenesis (183, 184). 

 

DHH, like other members of the hedgehog family, 

undergoes post-translational modifications including N-

terminal palmitoylation by HHAT (hedgehog acyl-

transferase), which is essential for efficient signaling. A 

mutation leading to defective HHAT function was found to 

cause complete gonadal dysgenesis and female phenotype 

in two 46,XY patients (185). 

 

Testicular cord formation can be detected in human fetuses 

13-20 mm crown-rump length (43-50 days) beginning in the 

central part of the gonad (186). Cord formation is heralded 

by the development of a new type of cell, the primitive 

Sertoli cell, characterized by a polarized, large and clear 

cytoplasm with abundant rough endoplasmic reticulum and 

complex membrane interdigitations (187), a downregulation 

of desmin and an upregulation of cytokeratins (188), and the 

expression of SOX9 (97), AMH (189, 190) and DHH (184, 

191, 192). Differentiating Sertoli cells also express growth 

factors, like nerve growth factors (NGFs), which can induce 

cell migration from the mesonephros acting through their 

receptors TRKA (NTRK1) and TRKC (NTRK3) (193, 194). 

Sertoli cells aggregate around large, spherical germ cells, 

with a large nucleus and pale cytoplasm, called gonocytes 

at this stage, which can be observed in the center of 

testicular cord cross-sections (186). The structural basis of 

cord formation seems to be dependent on basal lamina 

deposition between Sertoli and peritubular cells with 

myofibroblastic characteristics (166). In the interstitial 

compartment, connective tissue, blood vessels and Leydig 

cells can be observed. As described above, one particular 

feature of testicular vasculature is the formation of the 

coelomic vessel, a large vessel that appears below the 

coelomic epithelium very early in testicular differentiation 

(161, 195). Surrounding the gonad, the basement 

membrane layer underlying the coelomic epithelium 

thickens to form the tunica albuginea. 

 

Sertoli and germ cell numbers increase exponentially in the 

human fetal testis throughout the second trimester (196) in 

response to FSH acting through its receptor in Sertoli cells 

(197-199), and androgens acting indirectly through the 

peritubular myoid cells (200). This probably explains why 

newborns with congenital hypogonadotropic hypogonadism 

have small testes and low serum levels of Sertoli cell 

markers, such as AMH and inhibin B (201, 202). Sertoli cells 

do not reach a mature state, and meiosis is not initiated in 

the human testis until pubertal age, when all Sertoli cells 

reach a high expression level of the androgen receptor 

(203-206). In mice, NRG1 and its receptors ERBB2/3 are 

also essential for Sertoli cell proliferation, and Nrg1 gene 

invalidation leads to Sertoli cell hypoplasia and micro-

orchidism (17). 

 

Morphologically and functionally distinct from testicular 

cords, the interstitial compartment contains developing 

Leydig cells (Fig. 7), the main androgen producing cells in 

the male. The origin of Leydig cells has not been clearly 

established: the precursors of fetal Leydig cells have been 

proposed to be either migrating cells from the coelomic 

epithelium, the mesonephros or the neural crest or resident 

cells present in the adreno-gonadal primordium (reviewed 

in refs (20, 207, 208). According to the latter hypothesis, a 

subset of SF1-expressing cells gives rise to all 

steroidogenic lineages of the gonads and adrenal cortex. 

This is supported by the finding of adrenal markers (209) 
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and adrenal-like cells in the fetal testis (210, 211) and of 

adrenal rests in the testes of male patients with congenital 

adrenal hyperplasia (212). Mesonephric cells expressing 

nestin, a cytoskeletal filament initially characterized in 

neural stem cells, are a multipotent progenitor population 

that gives rise to Leydig cells, pericytes and smooth muscle 

cells. However, the first cohort of Leydig cells derive from 

nestin-negative cells, confirming the multiple origins of fetal 

Leydig cells (213).  

 

Another particular feature of the mouse testis is that Leydig 

cell populations can be divided into fetal and adult Leydig 

cells according to the time they arise. Fetal Leydig cells 

disappear after birth and are replaced by adult Leydig cells 

at puberty (214). Despite their similar functions, fetal and 

adult Leydig cells show morphologic and gene expression 

differences: some progenitor cells that lose Wt1 expression 

and are HES1-negative/GLI1-negative become located to 

the interstitial tissue, do not express SOX9 and differentiate 

into fetal Leydig cells, under the effect of the Notch signaling 

pathway. Another subset of cells that expresses HES1 and 

GLI1, under the Hedgehog signaling pathway, are not 

initially steroidogenic, but give rise to adult Leydig cells in 

postnatal life (38). 

 

In the human fetus, Leydig cells can be identified in the 

interstitial tissue by the beginning of the 8th week (215) —

after testicular cords have completely formed— and soon 

begin to produce testosterone, which plays an essential role 

in the stabilization of Wolffian ducts and the masculinization 

of external genitalia. Leydig cells also produce insulin-like 

growth factor 3 (INSL3), a growth factor responsible for the 

transabdominal phase of testicular descent (216-218). 

Although the initial differentiation of fetal Leydig cells 

depends, at least partially, on Sertoli cell-secreted PDGFs 

binding to PDGFRα (219) independently of gonadotropin 

action (220), further Leydig cell differentiation and 

proliferation depends on placental hCG in the first and 

second trimesters of fetal life and on fetal pituitary LH 

thereafter acting on the LH/CG receptor (221). At mid-

gestation, interstitial tissue is literally packed with Leydig 

cells; afterwards their number decreases (196, 215).  

 

SF1 action, is suppressed by WNT4-activated DAX1 

expression (222). By counteracting WNT4, and thus 

downregulating DAX1 in interstitial cells of XY gonads, SRY 

might indirectly enhance SF1 action (223, 224). Finally, 

ARX is an X-chromosome gene identified in patients with X-

linked lissencephaly and genital abnormalities probably 

associated with a block in Leydig cell differentiation (225). 

FGF9 (131, 177) and DHH (180) are Sertoli cell-secreted 

signals involved in Leydig cell differentiation. 

 

 
FIGURE 7. Leydig cells accumulate in the testicular interstitial tissue of a 90-mm male human fetus (11th week). 

Large eosinophilic Leydig cells with a prominent nucleus are interspersed with mesenchymal cells. 
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Timing of Testicular Differentiation 

 

In order for the fetal testis to adequately differentiate and 

secrete masculinizing hormones, not only do all these 

factors need to be present at sufficient levels in the right cell 

lineage, but their expression must also be initiated within a 

narrow time window. In mice, the ability of SRY to induce 

testis development is limited to a time window of only 6 

hours after the normal onset of expression in XY gonads. If 

SRY is expressed later, Sox9 gene activation is not 

maintained due to failure of FGF9/WNT4 signaling to switch 

to a male pattern (69). 

 

Germ Cell Interaction with Somatic Cells in the 

Developing Testis: Repression of Meiosis 

 

Upon arriving in the undifferentiated genital ridge, by the 

end of the 5th week, germ cells continue to proliferate by 

mitosis and maintain bipotentiality for approximately one 

week. Then germ cells in the male gonad become enclosed 

in the seminiferous cords and differentiate into the 

spermatogonial lineage, which does not enter meiosis until 

the onset of puberty. Gonocyte proliferation in the fetal testis 

is inhibited by androgens (226). Prevention of entry into 

meiosis was first thought to be a specific effect of male 

somatic cells since germ cells entering a prospective ovary 

or those which have failed to enter gonads of either sex 

enter meiosis at approximately the same time and develop 

into oocytes, irrespective of their chromosomal pattern 

(227). Subsequent studies shed light on the sexually 

dimorphic evolution of gametogenesis in the fetal gonads. 

The mesonephros from the indifferent gonad, as well as the 

lung and adrenal gland, synthesize retinoic acid that acts as 

a meiosis inducer (228, 229). Germ cells embedded in the 

seminiferous cords do not enter meiosis because they are 

protected from retinoic acid action: mouse Sertoli cells 

express two factors that prevent meiosis onset: FGF9 (230) 

and CYP26B1, an enzyme that catabolizes retinoic acid 

(231, 232). NANOS2, expressed in germ cells, is also a 

meiosis-preventing protein, since in the fetal testis it 

represses the expression of STRA8 (233) (for details on 

STRA8, see “Genetic control of oogenesis and 

folliculogenesis“. In human fetal testis, CYP26B1 does not 

seem to be expressed, and the mechanism underlying the 

inhibition of germ cell entry into meiosis needs to be 

elucidated (234, 235). 

 

Chromosomal constitution does not influence sex 

differentiation of germ cells: XX germ cells surrounded by 

Sertoli cells differentiate into spermatogonia, whereas XY 

germ cells in an ovarian context differentiate into oogonia 

and then enter meiosis (236). However, germ cells whose 

karyotype is discordant with the somatic lineages fail to 

progress through gametogenesis and enter apoptosis later 

in life. 

 

The influence of germ cells on the developing gonad is 

sexually dimorphic: Germ cell progression through meiosis 

is essential for the maintenance of the fetal ovary, otherwise 

prospective follicular cells degenerate and streak gonads 

result. In contrast, the development of the testes is not 

hindered by the lack of germ cells (195). 

 

STABILIZATION OF OVARIAN 

DIFFERENTIATION: CELLULAR AND 

MOLECULAR PATHWAYS 

 

Genetic Pathways of Ovarian Differentiation 

 

The pathway leading to ovarian differentiation and 

stabilization is far more complex than what was originally 

hypothesized. In humans, the absence of an active SRY 

gene –e.g. SRY mutations or deletions of the Y 

chromosome involving the SRY locus– results in gonadal 

dysgenesis of variable degrees, but is not sufficient to allow 

ovarian differentiation: no oocyte meiotic progression or 

follicle development has been described, even during fetal 

life. Recent findings suggest that most probably the 

coordinated action of several factors is needed for the 

differentiation and stabilization of the ovaries (237-239) 

(Table 3, Figs. 4, 6 and 8). 

 

WNT4 is a secreted protein that functions as a paracrine 

factor to regulate several developmental mechanisms. WNT 

proteins bind to the frizzled (FZ) family of membrane 

receptors and LRP5/6 co-receptors, leading to the 

activation of the phosphoprotein disheveled (DVL) and a 

subsequent increase in cytoplasmic β-catenin levels owing 
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to an inhibition of its degradation rate (240). In turn, WNT4 

is upregulated by the action of β-catenin, which establishes 

a positive feedback loop, and also indirectly by the 

GATA4/FOG2 complex, which represses DKK1 (241). 

DKK1 is capable of binding to the LRP5/6 co-receptor, thus 

preventing the formation of the WNT-FZ-LRP5/6 signaling 

complex. WNT4 is expressed at similar levels in the XY and 

XX bipotential gonads. When SRY upregulates SOX9 in XY 

gonads, and the feed-forward loops with FGF9 and PGD2 

are established, WNT4 is silenced (130) (Fig. 4). In XX 

gonads, the absence of SRY releases WNT4 expression, 

which stabilizes β-catenin and silences FGF9 and SOX9 

(130). WNT4 also up-regulates DAX1 (222), which 

antagonizes SF1 and thereby inhibits steroidogenic 

enzymes. WNT4-deficient XX mice express the 

steroidogenic enzymes 3-hydroxysteroid dehydrogenase 

and 17-hydroxylase, which are required for the production 

of testosterone and are normally suppressed in the 

developing female ovary (242). In humans, a duplication of 

chromosome 1 containing 1p36.12, where human WNT4 

maps, causes ambiguous genitalia of XY patients, probably 

due to low testosterone production (222), whereas 

inactivation of both copies of WNT4 in XX human fetuses 

results in alterations in gonadal morphology, ranging from 

ovotestes to testes, associated with renal agenesis, adrenal 

hypoplasia, and pulmonary and cardiac abnormalities 

(SERKAL syndrome: Sex reversal with kidney, adrenal and 

lung abnormalities) (243). WNT4 is also involved in the 

development of the internal genital tract (see below). 

 

Like WNT4, RSPO1 is expressed in the undifferentiated 

gonadal ridge of XY and XX embryos and increases in the 

XX gonads in the absence of SRY. RSPO1 binds to G 

protein–coupled receptors LGR4 and LGR5 (244), 

stimulates the expression of WNT4 and cooperates with it 

to increase cytoplasmic β-catenin (Fig. 5) and FST levels 

(245-248). RSPO1 is thought to facilitate WNT-FZ-LRP 

complex formation through fending off DKK1 and by 

sequestering ZNRF3, which promotes FZ degradation by 

ubiquitination and increased turnover (154, 155, 249). The 

increase in WNT4/β-catenin counteracts SOX9, thus 

leading to the ovarian pathway (170). Loss of function 

mutations in the human RSPO1 gene and Rspo1 gene 

ablation in mice result in the formation of ovotestes in the 

XX fetus probably owing to SOX9 upregulation (75, 170, 

250). 

 

β-catenin also activates FOXL2 winged helix/forkhead 

transcription factor, expressed in germ and somatic cells, 

more strongly in the female than the male fetal gonad from 

the 8th fetal week (251) and involved in granulosa cell 

differentiation (252, 253). The high levels of WNT4/β-

catenin and FOXL2 counteract FGF9 and SOX9, thus 

leading to the stabilization of the ovarian differentiation 

pathway (238, 239). FOXL2 also represses SF1 expression 

by antagonizing WT1 in the XX mouse fetus (254). FOXL2 

and FST are needed for the survival of meiotic germ cells 

(72, 255, 256). In the XY fetus, SOX9 represses FOXL2 

expression in the gonad (257). Conversely, inducible 

deletion of Foxl2 in adult mouse ovarian follicles leads to 

upregulation of Sox9 and reprogramming of adult ovaries to 

testes (72). In goats, XX males develop in the event of a 

deletion in the autosomal PIS locus (258), where FOXL2 

has been identified. In humans, FOXL2 mutations result in 

a variety of phenotypes, from streak gonads to adult ovarian 

failure associated with eyelid abnormalities characterized 

by blepharophimosis, ptosis and epicantus inversus (BPES) 

(259). 

 

Germ cell entry into meiosis is a specific feature of initial 

ovarian differentiation (Table 3, Figs. 4 and 9). Once 

stabilized by the cooperative action of WNT4 and RSPO1, 

cytoplasmic β-catenin migrates to the nucleus and induces 

the expression of FST. The latter antagonizes Activin B, 

thus repressing endothelial cell migration and the coelomic 

vessel formation, one of the earliest testis-specific events 

(170). Wnt4 has a similar effect (256). 

 

MAP3K1 modulates the balance between female and male 

pathways. As explained above (see “FGF9 and PGD2: 

Maintaining SOX9 Expression Levels”), SOX9 and FGF9 

upregulate AXIN1 and GSK3β, which promote the 

destabilization of β-catenin, thus blocking ovarian 

development. MAP3K1 sequestrates AXIN1; consequently, 

there is a stabilization of β-catenin, which favors the ovarian 

pathway (132). In XY patients with mutations of MAP3K1 

that result in increased binding to AXIN1, there is an 

increase of β-catenin leading to defective testicular 

differentiation and finally resulting in gonadal dysgenesis 

(151). 
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FIGURE 8. Female sex determination. As in the male, general transcription factors, as LHX1, EMX2 and PAX2, are 

necessary for intermediate mesoderm development. The gonadal ridge differentiates from the intermediate 

mesoderm following the action of SF1, LHX9 and WT1. WNT4, FST, RSPO1 and β-Catenin should be expressed to 

antagonize testis differentiation and promote early ovarian differentiation. Germ cell development (dependent on 

BMP family members, KIT ligand and its receptor C-KIT, WNT4, FST, retinoic acid and its receptors, the existence 

of two X chromosomes as well as several factors like DAZLA, MSH5, STRA8 and DMC1) are essential for fetal 

ovary stabilization. A number of other factors are involved in early folliculogenesis (FOXL2, neurotrophins and 

neurotrophin tyrosine kinase receptors, FIGα, NOBOX, SOHLH and members of the TGFβ family like GDF9, AMH 

and BMP15). 

 

Ovarian Morphogenesis  

 

In the XX fetus, the gonad remains histologically 

undifferentiated after the 7th week from a histological 

standpoint, but a functional differentiation is already 

detectable: XX gonads become capable of estradiol 

production at the same time as XY gonads begin to 

synthesize testosterone (260). PGCs proliferate by mitosis 

and differentiate to oogonia. Ovarian maturation proceeds 

from the center to the periphery. At week 10, oogonia in the 

deepest layers of the ovary enter meiotic prophase, the first 

unequivocal sign of morphological ovarian differentiation. 

Subsequently, oogonia become surrounded by a single 

layer of follicular (granulosa) cells, they enter meiosis, 

become oocytes and form primordial follicles (Fig. 9). 

Initiation of meiosis in the fetal ovary is heralded by the 

increase in retinoic acid levels synthesized by retinaldehyde 
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dehydrogenase isoform 1 (encoded by ALDH1A1), 

expressed in the developing female gonad (261).  

 

The earliest primary follicles appear at 15-16 weeks and the 

first Graafian follicles at 23-24 weeks (262, 263). By the end 

of the 7th month of gestation, mitotic activity has ceased and 

almost all germ cells have entered meiotic prophase. 

Oocytes proceed to the diplotene stage, where they remain 

until meiosis is completed at the time of ovulation in adult 

life. However, not all oocytes undergo meiosis: from 6-7 

million ovarian follicles at 25 weeks, only 2 million persist at 

term (264). Most oocytes undergo apoptosis and follicles 

become atretic. AMH is produced, albeit in low amounts, 

after the 23th week of development (265) by granulosa cells 

from primary to antral follicles, but not by primordial follicles 

(266-268). The dynamics of follicle development and entry 

of germ cells into meiosis is notably different in rodents, in 

whom meiosis and folliculogenesis only progress after birth 

(170). 

 

The involvement of germ cells in the stabilization of the 

gonadal structure is one major difference between the ovary 

and the testis, with germ cells being critical only in the 

ovaries in terms of maintenance of the somatic component 

of the gonad. In fact, while fetal testis development 

progresses normally in the absence of germ cells (269), 

ovarian follicles do not develop when germ cells are absent 

(263, 270). Furthermore, if germ cells are lost after 

formation of follicles, these rapidly degenerate (263, 271, 

272). 

 

In XX gonads, very few endothelial cells migrate from the 

mesonephros to the gonad, which suggests that cortical and 

medullary domains of the ovary are already established in 

early gonadogenesis, although no morphological 

boundaries are evident, consistently with molecular 

evidence of discrete gene expression domains specified by 

12.5 dpc in the mouse ovary (255). The coelomic vessel 

formation, characteristic of the differentiating testis, does 

not occur in the normal XX gonadal ridge. 

 

Granulosa cells, the equivalent of the Sertoli cells of the 

testes, originate from 3 possible sources: the ovarian 

surface epithelium, mesonephric cells from the adjacent 

rete ovarii, and the existing mesenchymal cells of the genital 

ridge (170, 273). Recent evidence in mice shows that many 

coelomic epithelial cells ingress to ovarian cortex and give 

rise to FOXL2-positive granulosa cells (274), confirming that 

other potential granulosa cell precursors are present in the 

gonadal ridge prior to the start of coelomic cell migration 

(173, 274). Theca cells, the counterpart of testicular Leydig 

cells, are thought to derive from fibroblast-like precursors in 

the ovarian stroma under the control of granulosa cells 

(275). 
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FIGURE 9. Developing human fetal ovaries. At 45 days, the ovary is recognizable only because it has not yet 

undergone testicular differentiation. In the cortex of the 14-week-old gonad, germ cells are aligned in rows, some 

of them have entered the meiotic prophase (arrows). In the medulla, primordial (small arrow head) and primary 

(large arrowhead) follicles are visible. 

 

Genetic Control of Oogenesis and Folliculogenesis 

 

Two major steps mark ovarian development: germ cell 

migration, proliferation and meiosis onset, followed by 

folliculogenesis. For a long time, it has been known that two 

intact X chromosomes are required in the human for ovarian 

differentiation and development –in contrast to the mouse, 

in which XY oocytes can occur in experimental conditions 

(65)– for ovarian differentiation and development. The lack 

of two X chromosomes, e.g. in Turner syndrome, results in 

germ cell loss and, subsequently, gonadal dysgenesis (263, 

271). Therefore, all the factors involved in the proliferation 

and migration of PGCs in early embryogenesis (see “The 

Germ Cells” section) are essential for ovarian formation.  

In the female gonad, germ cells continue to proliferate by 

mitosis. Meiotic entry is delayed until the 10th week in the 

human fetus and the 13th day in the mouse fetus (Table 1), 

due to the suppressive effect of the Polycomb repressive 

complex 1 (PRC1), which represses STRA8 and other 

factors involved in the differentiation of primordial germ cells 

and in early meiosis programs until retinoic acid reaches a 

threshold (276). Retinoic acid, synthesized by retinaldehyde 

dehydrogenases present in the mesonephros and the 

developing ovary (261, 277, 278), binds to the retinoic acid 

receptor (RAR) present in the germ cells and induces the 

expression of STRA8 (229, 234), a transcription factor that 

upregulates DAZL and SYCP3, two proteins involved in the 

formation of the synaptonemal complex essential for the 

onset of meiosis (39). Stabilization of oocytes requires the 

expression of MSH5, a protein involved in DNA mismatch 

repair (279). In Msh5 null mice, oocytes are lost before the 

diplotene stage resulting in ovarian dysgenesis. The 

expression of STRA8 takes place in an anterior-to-posterior 

wave and is followed by the upregulation of another meiotic 

gene Dmc1 (280). For a detailed description of other factors 

involved in oocyte development, see refs. (281) and (282). 
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A number of genes are upregulated in the human ovary 

before and during primordial follicle formation; their 

functional implications still need to be elucidated (283). In 

mice, neurotrophins (NTs) and their NTRK tyrosine kinase 

receptors facilitate follicle assembly and early follicular 

development (284). Factors involved in germ cell meiosis 

are also important. Although not essential to ovarian 

differentiation, several factors are involved in the 

development of ovarian follicles. FIGα is crucial for the 

formation of primordial follicles (285). AMH regulates the 

recruitment of primordial follicles into subsequent steps of 

folliculogenesis (286, 287), NOBOX, SOHLH1 and 

SOHLH2 are critical transcription factors during the 

transition from primordial to primary follicles (reviewed in 

ref. (39). GDF9 (288, 289) and BMP15 (290, 291) are 

important for follicle growth beyond the primary stage. An 

increasing number of factors are involved in later steps of 

folliculogenesis (for review, see ref. (39). 

 

THE INTERNAL REPRODUCTIVE TRACT  

 

The Indifferent Stage 
 

Up to 8 weeks in the human embryo, the internal 

reproductive tract is similar in both sexes and consists of a 

set of two unipotential ducts, the Wolffian and Müllerian 

ducts (Fig. 10). 

 

 
FIGURE 10. Undifferentiated reproductive tract. Both Wolffian and Müllerian ducts are present. Müllerian ducts 

open in the urogenital sinus at the level of the Müllerian tubercle between the orifices of the Wolffian duct. 

 

Wolffian Ducts  

 

In both the XX and the XY human embryo, Wolffian 

(mesonephric) ducts originate in the intermediate 

mesoderm, laterally to somites 8-13 in embryos 24 to 32 

days old (Table 1) (3). Wolffian ducts elongate caudally and 

induce the formation of nephric tubules through a 

mesenchymal‑epithelial transition process. These tubules 
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give rise, in a cephalic-to- caudal direction, to the three 

kidney primordia: pronephros, mesonephros and 

metanephros. While the pronephros and mesonephros are 

transient structures that soon degenerate, the metanephros 

is one of the main sources of the definitive kidney. Because 

Wolffian ducts are crucial for kidney development, abnormal 

formation of the Wolffian ducts is usually associated with 

other malformations in the urinary or genital systems. 

 

Several factors have been identified in the induction and 

development of the Wolffian ducts (292, 293): PAX2 and 

PAX8, acting through GATA3, induce the initial formation, 

and LIM1 is required for the extension of the Wolffian ducts 

(293). EMX2 is necessary for their maintenance, whereas 

FGF8 and its receptors FGFR1 and FGFR2 seem to be 

important in the development and maintenance of different 

segments (cranial or caudal) of the Wolffian ducts (293). 

 

A single ureteric bud evaginates from the Wolffian duct and 

grows dorsally, in response to inductive signals from 

metanephric mesenchyme involving GREMLIN1, BMP4 

and BMP7 (294). RET signaling is involved in multiple 

aspects of early Wolffian duct development (295). Growing 

caudally, Wolffian ducts undergo extensive elongation and 

coiling while progressively acquiring a lumen. Factors 

involved in Wolffian duct stabilization, elongation and coiling 

include the SFRP1 and SFRP2, VANGL2, WNT5A and 

PKD1 (293).  

 

As the Wolffian ducts elongate towards the cloaca, they 

induce the formation of the mesonephric tubules, most of 

which finally undergo regression, except close to the testes. 

There is a number of factors involved in mesonephric tubule 

development, including PAX2, PAX3, PAX8, GATA3, 

OSR1, WNT9B, WT1, SIX1, FGFR1, FGFR2, FGFR8 and 

SHH (292, 293, 296, 297). The mesonephric tubules give 

rise to the efferent ducts connecting the rete testis with the 

epididymis. WNT9B knockout male mice fail to develop the 

efferent ducts and the epididymis (298). Epididymal 

disjunction from the rete testis reflects a defect in these 

processes and can be found in approximately 40 % of 

patients with cryptorchidism (299).  

 

The Wolffian ducts finally reach the caudal part of the 

hindgut, the cloaca. A spatiotemporally process of regulated 

apoptosis in both the Wolffian ducts and the cloaca is 

necessary for Wolffian duct insertion into the cloaca (300). 

The Wolffian ducts become incorporated into the male 

genital system when renal function is taken over by the 

definitive kidney, the metanephros (301). 

 

Müllerian Ducts 

  

Müllerian (paramesonephric) ducts, which give rise to most 

of the female reproductive tract, develop after Wolffian 

ducts in the urogenital ridges of both XX and XY embryos. 

They arise in 10-mm human embryo (5–6 weeks of 

gestation) as a cleft lined by the coelomic epithelium, 

between the gonadal and mesonephric parts of the 

urogenital ridge (3). This coelomic opening will later 

constitute the abdominal ostium of the Fallopian tube. The 

cleft is closed caudally by a solid bud of epithelial cells, 

which burrows in the mesenchyme lateral to the Wolffian 

ducts and then travels caudally inside their basal lamina. 

Initially, these cells are mesoepithelial, i.e. they exhibit 

characteristics of both the epithelium and the mesenchyme; 

they will become completely epithelial only in the female, at 

the time male ducts begin to regress (302, 303). At 8 weeks 

of development, the growing solid tip of the Müllerian duct, 

now in the pelvis, lies medial to the Wolffian duct, having 

crossed it ventrally in its downward course. For a while, the 

two Müllerian ducts are in intimate contact, then they fuse, 

giving rise to the uterovaginal canal (Fig. 11), which makes 

contact with the posterior wall of the urogenital sinus, 

causing an elevation, the Müllerian tubercle, flanked on both 

sides by the opening of the Wolffian ducts (Fig. 10). 
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FIGURE 11. Fused Müllerian ducts flanked by Wolffian ducts in the lower reproductive tract of a 50-mm female 

human fetus (10th week). 

 

Development of the Müllerian duct occurs in three phases 

(Fig. 12) (302, 303). First, cells of the coelomic epithelium 

are specified to a Müllerian duct fate. These can be 

identified by a placode-like thickening of the coelomic 

epithelium and by the expression of LHX1 (302, 304) and 

anti-Müllerian hormone receptor type II (AMHR2) (305, 

306). Transcriptional co-factors DACH1 and DACH2 are 

required for the formation of Müllerian ducts, possibly by 

regulating the expression of LHX1 and WNT7A or other 

factors important for Müllerian duct formation (307, 308). 

During the second phase, these primordial Müllerian cells 

invaginate from the coelomic epithelium to reach the 

Wolffian duct. WNT4 expression in the mesonephric 

mesenchyme is essential for the Müllerian duct progenitor 

cells to begin invagination (304, 309). 

 

The third or elongation phase begins when the invaginating 

tip of the Müllerian duct contacts the Wolffian duct. This 

phase consists in the proliferation and caudal migration of a 

group of cells at the most caudal tip. Müllerian duct 

elongation continues in close proximity to the Wolffian duct, 

then Müllerian ducts cross Wolffian ducts ventrally and fuse 

centrally close to the urogenital sinus. 

 

As could be expected, integrity of protein kinase pathways 

is required for cell proliferation (310). Close contact with the 

Wolffian duct is also necessary to Müllerian growth; indeed, 

the lack of transcription factors required for Wolffian 

development, such as LIM1 or PAX2, leads to Müllerian 

truncation (see Table 4). Wolffian ducts do not contribute 

cells to the elongating Müllerian tip (302, 311), but act by 

supplying WNT9B, secreted by Wolffian epithelium (298). 
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FIGURE 12. Müllerian duct (MD) development can be subdivided into three phases. A. Phase I (initiation): MD 

progenitor cells in the mesonephric epithelium (ME) (yellow) are specified and begin to express LHX1. Phase II 

(invagination): in response to WNT4 signaling from the mesenchyme, LHX1+ MD progenitor cells invaginate 

caudally into the mesonephros towards the WD (blue). Phase III (elongation): the tip of the MD contacts the WD 

and elongates caudally in close proximity to the WD requiring structure and WNT9B signaling from the WD. B. 

Beginning at ∼ E11.5 in mice, the MD invaginates and extends posteriorly guided by the WD. During elongation, 

mesenchymal cells separate the WD and MD anterior to the growing tip (inset I). However, at the MD tip, the MD 

and WD are in contact (inset II). At ∼ E12.5, the MD crosses over the WD to be located medially. Elongation is 

complete by ∼ E13.5 with the MD reaching the urogenital sinus (UGS). A = anterior (rostral); D = dorsal; P = 

posterior (caudal); V = ventral. Reprinted with permission from ref. (303): Mullen RD, Behringer RR. Molecular 

Genetics of Müllerian Duct Formation, Regression and Differentiation. Sexual Development 8:281-296 (2014), 

Copyright 2014, Karger. 

 

Caudally each Müllerian duct contacts the urogenital sinus 

at the Müllerian tubercle. This is a critical step and its failure 

can lead to lower vaginal agenesis, as it has been observed 

in Lhfpl2 mutant mice (312). In weeks 7 and 8, the caudal 

portions of the Müllerian ducts lie between the two Wolffian 

ducts near the urogenital sinus. Then during the 8th week, 

Müllerian ducts fuse in the midline, leaving temporarily an 

epithelial septum that disappears one week later giving rise 
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to the midline uterovaginal canal. The degree of midline 

fusion of Müllerian ducts is extensive in humans, but it is 

almost inexistent in mice, exhibiting paired oviducts and 

large bilateral uterine horns. Defects in Müllerian duct fusion 

and retention of the midline septum can lead to various 

congenital malformations in humans, including separate 

hemiuteri, uterus didelphys or unicornis, double vagina or 

cervix, vagina with septum etc. (313). 

 

MALE DIFFERENTIATION OF INTERNAL 

GENITALIA 

 
Male differentiation of the internal genital tract is 

characterized by regression of Müllerian ducts and 

differentiation of the Wolffian duct into male accessory 

organs. 

 

Müllerian Duct Regression 

 

Müllerian regression, the first sign of male differentiation of 

the genital tract, occurs in 55 to 60 day-old human embryos 

(Fig. 13), triggered by anti-Müllerian hormone (AMH) at the 

center of a complex gene regulatory network (reviewed in 

ref (314)). Once initiated, the regression of the Müllerian 

duct extends caudally as well as cranially, sparing the 

cranial tip which becomes the Morgagni hydatid, and the 

caudal end, which participates in the organogenesis of the 

prostatic utricle. Müllerian regression of the cranial part of 

the Müllerian duct begins while the duct is still growing 

caudally towards the urogenital sinus (315) and is 

characterized by a wave of apoptosis spreading along the 

Müllerian duct (316, 317). Extra-cellular matrix is deposited 

in the peri-Müllerian mesenchyme (318), which 

progressively strangles the Müllerian duct epithelium and 

finally remains the only witness of its former existence. 

Mesenchymal changes are preceded by the dissolution of 

the basement membrane, which precipitates apoptosis and 

allows extrusion of epithelial cells and their transformation 

into mesenchymal cells (317, 319). Epithelial-mesenchymal 

transformation is an important factor of epithelial cell loss 

during Müllerian regression.  

 

Integrity of the WNT/β-catenin pathway is required for 

complete Müllerian duct regression in the male, perhaps 

through amplification of the AMH signal (320). β-catenin 

accumulates in the nucleus (317) upregulating Osterix 

(Osx), also called Sp7, an AMH-induced gene that regulates 

the expression of matrix metallopeptidase 2 (MMP2) (321). 

Osx is expressed in male, but not female, Müllerian ducts 

before and during regression. Overexpression of human 

AMH in female fetuses induces Osx, and Amhr2 knockout 

males lose Osx expression. Additionally, conditionally 

invalidation of β-catenin in the Müllerian ducts leads to a 

reduction in Osx expression, indicating that OSX is 

downstream of β-catenin in the regression pathway. 

 

Wif1 (WNT inhibitory factor 1) encodes a secreted frizzled-

related protein that inhibits WNT signaling. WIF1 shows 

many similarities to OSX: it is expressed in the male, but not 

the female, Müllerian duct and is not detected in Amhr2 

knockout mice. However, Müllerian ducts are absent in Wif1 

knockout male mice, which implies that WIF1 is not 

indispensable for Müllerian duct regression (322). 
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FIGURE 13. Regressing Müllerian duct in a 35-mm male human fetus (9th week). Note the fibroblastic ring 

surrounding the epithelium of the Müllerian duct (right), the Wolffian duct is visible on the left. 

 

Stabilization and Differentiation of Wolffian Ducts  

 

The second aspect of male differentiation of the internal 

genital tract is the stabilization and differentiation of the 

Wolffian ducts (323). After the loss of mesonephric 

functional activity, the mesonephric nephrons and caudal 

tubules degenerate but the cranial tubules persist to form 

the male efferent ducts. The connections between the 

mesonephric tubules and the gonadal primordium are 

permanently established in the sixth week; in the male, they 

give rise to the rete testis, while in the female, they form the 

rete ovarii. Between weeks 9 and 13 in the human embryo, 

the upper part of the Wolffian duct differentiates into the 

epididymis. Below, it is surrounded by a layer of smooth 

muscle and becomes the vas deferens, which opens into 

the urogenital sinus at the level of Müllerian tubercle. In 

sexually ambiguous individuals, in whom Wolffian and 

Müllerian ducts coexist, the vas deferens is embedded in 

the uterine and vaginal walls (reviewed in ref. (324). The 

seminal vesicle originates from a dilatation of the terminal 

portion of the vas deferens in 12-week-old fetuses.  

 

Testicular Descent  

 

During human fetal development, the testis migrates from 

its initial pararenal position to its terminal location in the 

scrotum (Fig. 14). Testicular descent has been subdivided 

into several phases (325). Initially, the upper pole of the 

testis is connected to the posterior abdominal wall by the 

cranial suspensory ligament while a primitive gubernaculum 

extends from the caudal pole to the inner inguinal ring. At 

12 weeks, the cranial suspensory ligament dissolves and 

the gubernaculum testis swells and pulls the testis down to 

the inguinal ring. After 25 weeks, the gubernaculum bulges 

beyond the external inguinal ring and is hollowed out by a 

peritoneal diverticulum called the processus vaginalis. The 

second –inguinoscrotal– phase of testicular descent occurs 

between 27 and 35 weeks after conception. « Physiological 

» cryptorchidism is frequent in premature infants. In the 

female, the cranial ligament holds the ovary in a high 

position and the gubernaculum, now the round ligament, 

remains long and thin. 
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FIGURE 14. Testicular descent. Left, Initial phase: the primitive gonad is located near the 

kidney, held by the cranial suspensory ligament (CSL) and the gubernaculum testis. Center, 

Transabdominal descent: androgen-mediated dissolution of the CSL and insulin like factor 3 

(INSL3) mediated swelling of the gubernaculum bring the testis to the internal orifice of the 

inguinal canal. Right, Inguino-scrotal migration: the testis passes through the inguinal canal 

into the scrotum, this phase is androgen-dependent. Reprinted from ref. (325): Klonisch T, 

Fowler PA, Hombach-Klonisch S. Molecular and genetic regulation of testis descent and 

external genitalia development. Developmental Biology, 270:1-18 (2004), Copyright 2004, with 

permission from Elsevier. 

http://www.sciencedirect.com/science/article/pii/S001216060400137X 

 

FEMALE DIFFERENTIATION OF INTERNAL 

GENITALIA 

 

Female differentiation of the internal genital tract is 

characterized by the disappearance of the Wolffian ducts, 

which is complete at 90 days of human fetal development, 

except for vestiges such as the Rosenmüller organs or 

Gartner canals. Traditionally, the regression of Wolffian 

ducts in the female fetus has been ascribed to a passive 

process deriving from the lack of androgen action. Recent 

work using a Nr2f2 (encoding COUP-TF2) deletion, 

conditionally targeted to the Wolffian mesenchyme, has 

shown that the regression of Wolffian ducts in female 

embryos is an active process induced by COUP-TF2 

through inhibition of the expression of FGFs, which 

otherwise activate the p-ERK pathway in the Wolffian duct 

epithelium for its maintenance (326). How androgens 

interact with this mechanism in males needs to be 

elucidated. 

 

Müllerian ducts persist, establish apico-basal 

characteristics and develop into an epithelial tube that will 

give rise to the endometrium (302), while the surrounding 
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mesenchyme differentiates into the myometrium of the 

uterus and Fallopian tubes (306). The acquisition of true 

epithelial characteristics signals the end of the AMH-

sensitive window of Müllerian ducts (302). Tubal 

differentiation involves formation of fimbriae and folds in the 

ampullary region (Fig. 15) and acquisition of cilia and 

secretory activity by the high columnar epithelium. The 

uterotubal junction is demarcated by an abrupt increase in 

the diameter of the uterine segment and by the 

development of epithelial crypts. The early endometrium is 

lined by a closely packed columnar epithelium in which 

gland formation and vacuolated cells can be recognized as 

gestation advances. The cervix occupies the distal two-

thirds of the fetal uterus.  

 

 
FIGURE 15. MÜLLERIAN DUCTS DEVELOP INTO THE UTERUS AND FALLOPIAN TUBES 

 

THE UROGENITAL SINUS AND EXTERNAL GENITALIA  

 

The Indifferent Stage  

 

Up to approximately 9 weeks, the urogenital sinus and 

external genitalia remain undifferentiated (Fig. 16). The 

urogenital sinus is individualized in 7-9 mm (~5 week) 

human embryos, when a transverse urorectal septum 

divides the cloaca into the rectum dorsally and the primitive 

urogenital sinus ventrally. The Müllerian tubercle 

demarcates the cranial vesicourethral canal from the caudal 

urogenital sinus.  
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FIGURE 16. Sex differentiation of urogenital sinus (left) and external genitalia (right). 

 

The cloaca is closed by the cloacal membrane, formed by 

ectoderm and endoderm, with no mesoderm in between. In 

the 5th week, mesodermal cells spread along the cloacal 

membrane and give rise to pair of swellings –the cloacal 

folds–, which form urogenital folds flanking the urogenital 

sinus and anal folds posteriorly. The urogenital folds fuse 

anteriorly to the cloacal membrane in the midline to form the 

genital tubercle. The cloacal membrane is divided by the 

urorectal septum into the genital membrane anteriorly and 

the anal membrane posteriorly. The genital membrane 

disappears in 20-22 mm (~8 week) embryos (327). 

 

In embryos 8-15 mm long (~6 weeks), the opening of the 

urogenital sinus, the ostium, is surrounded by the 

labioscrotal swellings, which develop on each side of the 

urogenital folds. These are connected to the caudal poles 

of the genital ridges by fibrous bands which later develop 

into the gubernaculum testis in males and the round 

ligament in females.  

 

The genital tubercle, consisting of lateral plate mesoderm 

and surface ectoderm, emerges as a ventral medial 

outgrowth just cranial to the opening of the ostium (328). 

Endodermal epithelial cells from the urogenital sinus are 

thought to invade the genital tubercle to form the midline 

epithelial urethral plate, which lies in the roof of the primary 

urethral groove and extends to the tip of the phallus (329, 

330). After the corpora cavernosa and glans have 

differentiated, the ventral surface of the genital tubercle is 

depressed by a deep furrow, the urethral groove. The 

external genitalia remain undifferentiated up to 

approximately 9 weeks (327) (Fig. 16).  

 

At 12 weeks in males and females alike, the vaginal 

primordium is formed by the caudal tips of the Müllerian 

ducts, and medial and lateral outgrowths of the urogenital 

sinus, the sinovaginal bulbs, which fuse to form the vaginal 

cord or plate. When the cells of the vaginal plate 

desquamate, the vaginal lumen is formed.  

 

MALE DIFFERENTIATION   

 

Urogenital Sinus and Prostate  

 

Male orientation of the urogenital sinus is characterized by 

prostatic development and by the repression of vaginal 

development. Prostatic buds appear at approximately 10 
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weeks at the site of the Müllerian tubercle and grow into 

solid branching cords. Maturation of the prostatic gland is 

accompanied by development of the prostatic utricle. Two 

buds of epithelial cells, called the sino-utricular bulbs in the 

male, develop from the urogenital sinus close to the opening 

of the Wolffian ducts and grow inwards, fusing with the 

medial Müllerian tubercle, to form the sino-utricular cord, 

enclosed within the prostate gland, which canalizes at 18 

weeks to form the prostatic utricle, the male equivalent of 

the vagina (331).  

 

External Genitalia 

  

Masculinization of the external genitalia begins in human 

male fetuses 35-40 mm long (~9 weeks) by lengthening of 

the anogenital distance (327) (Fig. 16). Fusion of the 

labioscrotal folds, in a dorsal to ventral fashion, forms the 

epithelial seam (332), which closes the primary urethral 

groove. The literature concerning penile development is 

controversial. Most textbooks describe it as a two-step 

process, with the proximal urethra forming by fusion of the 

urethral folds around the urethral plate and the distal urethra 

arising from an invagination of the apical ectoderm. 

However, according to Cunha and colleagues (333), the 

entire human male urethra is of endodermal origin, formed 

by the urethral plate dorsally and the fused urethral folds 

ventrally. The seam is remodeled into the tubularized 

urethra without connection to the epidermis. The ventrally 

discarded excess epithelial cells migrate into the ventral 

skin of the penis. Abnormalities of seam formation or 

remodeling could explain the vast majority of cases of 

hypospadias in which defects of androgen synthesis or 

metabolism cannot be demonstrated (334).  

 

Urethral organogenesis is complete at 14 weeks, apart from 

a physiological ventral curvature, which can persist up to 6 

months of gestation. However, surprisingly, no size 

difference exists between penile or clitoral size until 14 

weeks (335) despite the fact that serum testosterone levels 

peak between 11 to 14 weeks in males (336). The 

insensitivity of the male genital tubercle to high levels of 

androgens during the second trimester does not correspond 

to a low expression of the androgen receptor or of 5α-

reductase type 2 in the corpora cavernosa (337). Maximal 

phallic growth occurs during the third trimester of fetal life, 

at a time when male testosterone levels are declining. The 

action of the growth hormone-insulin-like growth factor 

system (GH-IGFs) is partly responsible for penile growth, 

independently of androgens (338-340). 

 

FEMALE DIFFERENTIATION   

 

Female orientation of the urogenital sinus is characterized 

by lack of prostatic differentiation and the acquisition of a 

separate vaginal opening on the surface of the perineum 

(Fig. 16). At the end of the ambisexual stage, the vaginal 

anlage is located just underneath the bladder neck. In 

females, the lower end of the vagina slides down along the 

urethra until the vaginal rudiment opens directly on the 

surface of the perineum at 22 weeks. The hymen marks the 

separation between the vagina and the diminutive 

urogenital sinus, which becomes the vestibule.  

 

The embryological origin of the vagina is still hotly debated. 

In the generally accepted view, the upper part of the vagina 

derives from the Müllerian ducts and the lower part from the 

sinovaginal bulbs, which by fusion form the vaginal plate, 

derived from the urogenital sinus (341). It is now thought 

that the Wolffian ducts do not contribute cells to the 

sinovaginal bulbs but they may have a helper function 

during downward movement of the vaginal bud in the 

female (342). Atresia of the vagina in the Mayer-Rokitansky-

Küster-Hauser syndrome could be explained by the failure 

of Wolffian and Müllerian ducts to descend caudally. 

 

Development of female external genitalia is essentially 

static. The anogenital distance does not increase, the rims 

of the urethral groove do not fuse, the urethral plate persists 

as an epithelial cord, and the labioscrotal swellings give rise 

to the labia majora. The dorsal commissure forms at their 

junction. The genital folds remain separate and become the 

labia minora. When the vagina acquires a separate perineal 

opening, the diminutive pars pelvina and the pars phallica 

of the urogenital sinus become the vestibule.  

 

CONTROL OF SEX DIFFERENTIATION 

 

Growth Factors 
 

GENITAL DUCT FORMATION  

 

Molecular genetic studies in the mouse have contributed to 

the identification of growth factors essential for the 

formation of the sexual ducts (Table 4) [see refs. (323) and 
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(343) for review]. Since Wolffian ducts are required for the 

elongation of Müllerian ducts, absence of growth factors 

necessary to Wolffian development will per se induce 

Müllerian truncation. Many growth factors, such as LIM1, 

EMX2, HOXA13, PAX2 and 8 and VANGL2 are essential 

also for the development of other organs. In contrast the role 

of WNT4A and WNT7A, a subset of the Wnt family 

homologous to the Drosophila wingless gene, is restricted 

to reproductive organs. WNT4 is required in both sexes for 

the initial formation of Müllerian ducts (309), mutations of 

WNT4 have been reported in three cases of Müllerian 

aplasia associated with hyperandrogenism in girls 

(reviewed in refs. (344-347), but have not been detected in 

classical forms of the Rokitansky-Küster-Mayer syndrome 

(240, 348). WNT7 is required for the expression of AMHR2; 

in its absence the Müllerian ducts do not regress in male 

fetuses (349). Members of the dachsung gene family, 

DACH 1 and 2 also play a role by regulating the expression 

of LIM1 and WNT7 (307). 

 

Congenital bilateral absence of the vas deferens affects 97-

98%% of patients suffering from cystic fibrosis, a bronchial 

and pancreatic disease due to mutations in the cystic 

fibrosis transmembrane conductance regulator (CFTR) 

(350). Whether efferent duct maldevelopment is a primary 

defect of cystic fibrosis or a secondary degenerative change 

resulting from obstruction by mucus is not known at the 

present time. 

 

TABLE 4. Consequences of Null Mutations of Growth Factors on Morphogenesis of Genital Ducts  

Growth factors  Wolffian ducts  Müllerian ducts  Gonads  References  

β-catenin  Normal  Lack of oviduct coiling. 

Lack of regression 

Loss of germ cells in 

the ovary. 

Testes normal  

(320, 351, 

352) 

DACH1/DACH2  Normal  Hypoplasia of female 

reproductive tract  

Normal  (307) 

DICER1  Normal Hypoplasia of female 

reproductive tract 

Reduced ovulation 

rate 

(353) 

EMX2  Early degeneration  Do not form  Absent  (5) 

HOXA13  Rostral ureteral junction  Agenesis of caudal 

portion  

Normal  (354) 

IGF1  Agenesis of caudal portion  Infantile uterus  No ovulation. 

Abnormal Leydig 

cells.  

(355) 

LIM1 (LHX1)  Do not form  Do not form  Normal  (304) 

PI3K/AKT Increased apoptosis Increased apoptosis 
 

(310) 

PAX2  Early degeneration  Early degeneration  Normal  (356) 

PAX8  Normal  Endometrium does not 

form  

Normal  (356, 357) 

Retinoic acid 

receptors  

Agenesis of vas deferens 

and seminal vesicles  

Agenesis of uterus and 

cranial vagina  

Normal  (358) 

WNT4  Persist in females 

No regression in males  

Do not form  Ovary produces 

testosterone  

(320) 

WNT7A  Normal  Persist in males  
 

(349, 359, 

360) 

 

VAGINA, PROSTATE, URETHRA, AND EXTERNAL 

GENITALIA  

 

Correct vaginal development requires Wnt, Pax and Vangl2 

genes (Table 5). Vaginal abnormalities similar to those 

elicited by diethylstilbestrol (DES) administration, i.e. 

vaginal clear-cell adenocarcinoma, vaginal adenosis, 

transverse vaginal ridges and structural malformations of 

the cervix and uterus, occur in transgenic mice deficient in 

WNT7A, a signaling molecule expressed by the Müllerian 

epithelium, suggesting that DES exposure acts by 

deregulating WNT7A during uterine morphogenesis (361). 
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WNT7A deficiency could act by interfering with normal 

mesenchymal-epithelial signaling, which is required for 

correct morphogenesis of the reproductive tract. Vaginal 

opening is regulated by PAX8 (357) and VANGL2 as shown 

in the mutated the loop-tail mouse (362). 

 

SOX9 (363) and FGF10 (364) both play a role in early 

prostate bud differentiation.  

The secreted frizzled-related proteins (SFRP1 and 2) are 

required for correct gubernaculum development and 

testicular descent (365). 

 

Early patterning of external genitalia is regulated by a 

cascade of signaling molecules which orchestrate 

interaction between tissue layers and 

mesenchymal/epithelial tissues (Table 5). External genitalia 

are appendages emerging from the caudal body trunk, 

hence many genes which pattern distal limb development 

also play a predominant role during genital tubercle 

formation, for example BMPs (328, 366), Fgf-8 and 10, Hox 

gene families (for reviews, see refs. (325, 367). β-catenin 

activates Fgf8 expression in the urethra, required for normal 

genital tubercle outgrowth (368). Sonic hedgehog (SHH) 

signaling regulates many of the mesenchymal genes 

involved (325, 328, 369-371) (Fig. 17). The homeotic genes 

Hoxa13 and Hoxd13 act in a partially redundant manner 

since double null mutants show more severe urogenital 

abnormalities than those with at least one functional allele 

(372).  

 

Ephrin family factor EFNB2 and receptors EPHB2 and 

EPHB3 mediate cell adhesion and patterning events 

occurring at the midline, including urethral closure and 

scrotal fusion, as well as palate fusion (328, 373). 

Diacylglycerol kinase K (DGKK), an enzyme that 

phosphorylates diacylglycerol, is expressed in the epithelial 

cells of the urethral plate (374). In humans, DGKK is 

strongly associated with hypospadias risk (375, 376). 

Regulation of urethral tube closure during the androgen-

dependent phase of penile development is mediated by 

FGF10, signaling through the IIIb isoform of fibroblast 

growth receptor 2 (FGFR2-3b), suggesting that these genes 

are downstream targets of the androgen receptor (377). 
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FIGURE 17. Growth factors regulating the outgrowth and ambisexual differentiation of the external genitalia. Role 

of sonic hedgehog (Shh) in the outgrowth and ambisexual differentiation of the genital tubercle (see table 5 for 

references). Most factors, with the exception of Hoxa13, are regulated by sonic hedgehog (Shh), expressed in the 

urethral epithelium (light green), and are identical to those regulating limb morphogenesis. Apoptosis is also 

affected by Shh. Data obtained from ref. (325): Klonisch T, Fowler PA, Hombach-Klonisch S. Molecular and 

genetic regulation of testis descent and external genitalia development. Developmental Biology, 270:1-18 (2004). 

http://www.sciencedirect.com/science/article/pii/S001216060400137X. 

 

TABLE 5. Growth Factors in Urogenital Development  

Growth factors  Role in urogenital development  References  

BMP4  Restricts prostate ductal budding  (378) 

BMP7  Closure of the distal urethra  (367) 

FGF8  Initiation of genital swellings;  (379) 

Ephrins  Urethral closure and scrotal fusion (373) 

FGF10  Development of the glans penis and clitoridis, and prostate  (364, 369, 379) 

FGFR2-IIIB Null mice exhibit severe hypospadias (377) 

HOXA10  Atrophic seminal vesicles in null mice  (380) 

HOXA13  In mice, semi-dominant mutations lead to limb defects, vaginal hypoplasia 

and deficiency of the os penis (Hypodactyly syndrome)  

In humans, an autosomal dominant mutation produces limb and uterine 

abnormalities and urinary tract malformations (Hand-Foot-Genital 

syndrome)  

(354, 381) 

HOXD13  Hoxd-13 null mice display decreased ductal branching in the prostate and 

seminal vesicle and agenesis of bulbourethral gland  

(382) 

HOXA13/HOXD13 null 

mutants  

No genital tubercle, no partition of the cloaca in double mutants  (372) 

LTAP  Vaginal opening  (362) 

MSX2  Disruption of vaginal epithelium and lack of caudal Wolffian regression  (383) 

PAX8  Vaginal opening  (357) 

SHH/GLI2 Outgrowth and patterning of external genitalia and urogenital sinus  

Development of prostatic ducts  

Inhibition of apoptosis in penile smooth muscle 

Masculinization of external genitalia 

(369, 371, 384, 

385) 

SOX9  Lack of ventral prostate development  (363) 

SFRP1 and 2 Testicular descent (365) 

VANGL2 (looptail 

mouse) 

Imperforate vagina (362, 386) 

WNT/β-catenin  Masculinization of external genitalia  (387) 

 

HORMONAL CONTROL OF MALE SEX 

DIFFERENTIATION 

 

The classical experiments of Jost (58, 59) (Fig. 2) have 

taught us that the reproductive tract, whatever its genetic 

sex, will develop along female lines provided it is not 

exposed to testicular hormones, the main forces driving 

male sex differentiation (Fig. 18). 
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FIGURE 18. Hormonal control of male sex differentiation. 

 

Anti-Müllerian Hormone (AMH) 

 

Anti-Müllerian hormone (AMH), a member of the TGFβ 

family, triggers Müllerian regression, the first step of male 

sex somatic differentiation. AMH is expressed at high levels 

by Sertoli cells from the time of testicular differentiation (Fig. 

19) until puberty and at lower levels thereafter (for reviews, 

see refs. (324, 388)). In the female, AMH begins to be 

produced in the second half of fetal life by granulosa cells 

of growing follicles (265, 266).  
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FIGURE 19. AMH protein expression by seminiferous tubules of an 11-week-old male human fetus, using an 

AMH-specific polyclonal antibody. Note the strong staining of seminiferous tubules. 

 

Low expression of AMH and/or its type II receptor AMHR2 

has also been identified in spermatocytes of maturing rat 

testis (389), the endometrium (390), the brain (391), 

hypothalamus (392), motor neurons (393) and female 

pituitary (394). 

 

TGFβ family ligands are translated as dimeric precursor 

proteins comprising two polypeptide chains, each 

containing a large N-terminal pro-region and a much smaller 

C-terminal mature domain. Processing involves cleavage at 

sites between the two domains and dissociation of the pro-

region domain. The AMH molecule is initially synthesized as 

a biologically inactive precursor. The precursor is cleaved 

by proteolytic enzymes into C and N terminal fragments 

which remain associated by non-covalent bonds (395, 396). 

Whether cleavage occurs at the time of secretion or within 

the target tissue is not clear at the present time. This step is 

required for binding of AMH to its primary receptor, at which 

time the AMH complex dissociates, releasing the mature 

ligand, the C-terminal homodimer and the N-terminal 

proregion (396). The homology of AMH to other members 

of the transforming growth factor-β (TGF-β) family is 

restricted to the C-terminus, for which a molecular model 

has been built, by analogy with crystallized members of the 

family (397) (Fig. 20). Cleavage and presumably bioactivity 

are enhanced if the endogenous cleavage site RAQR is 

replaced by a furin/kex2 RARR consensus site (398). 
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FIGURE 20. Molecular model of C-terminal AMH. A three-dimensional model of the C-terminal dimer was 

generated by comparative modeling using human BMP9 (399) as a template. The wrist epitope, the putative 

binding site for the type I receptor, is composed of the prehelix loop and alpha-helix of one monomer together 

with the concave side of the fingers of the second monomer (400). A mutation in the prehelix loop of AMH, 

Q496H, causes persistent Müllerian duct syndrome (397). Residues in the knuckle epitope of AMH, the putative 

binding site for AMHR2, are similar to those present in BMP7 and activin at the interface with ACTR2B (401, 402). 

Disulfide bonds (yellow) and Q496 residues (blue) are shown as sticks; residues in the knuckle epitopes are 

shown as spheres. Reprinted from ref. (397): Belville C, Van Vlijmen H, Ehrenfels C, Pepinsky RB, Rezaie AR, 

Picard J, Josso N, di Clemente N, Cate RL. Mutations of the anti-Müllerian hormone gene in patients with 

persistent Müllerian duct syndrome: biosynthesis, secretion and processing of the abnormal proteins and 

analysis using a three-dimensional model. Molecular Endocrinology 18:708-721 (2004). Copyright 2004 The 

Endocrine Society with permission. http://mend.endojournals.org/content/18/3/708.abstract?sid=22a37d21-69b5-499e-

9996-8b1d4df81215 

 

The human 2.8-kb gene has been cloned (403) and mapped 

to chromosome 19p13.3 (404). It consists of five exons, the 

last one coding for the C-terminal fragment. The AMH gene 

has been cloned in many other mammals (405-409), in the 

marsupial tammar wallaby (410), in the chick (411, 412) and 

American alligator (413), all of which carry Müllerian ducts 

which regress in the male. The gene is also present in the 

caudate amphibian, Pleurodeles waltl, whose Müllerian 

ducts persist in males (414). Even more surprisingly, AMH 

orthologs (415, 416) and the AMH type II receptor (417) 

have been cloned from the gonads of modern teleost fish, 

which do not possess Müllerian ducts at all. In fish, AMH 

appears to be involved essentially in germ cell proliferation 

and gonadal development (reviewed in ref. (418)), which 
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suggests that AMH was initially a regulator of gonadal 

differentiation which acquired its anti-Müllerian activity 

during the course of evolution without completely 

relinquishing its former role. Indeed, in higher vertebrates, 

AMH inhibits Leydig cell differentiation (419) and follicle 

maturation (420). 

 

The ontogeny of AMH expression differs widely between 

males and females. In the human fetal testis, AMH mRNA 

and protein can be detected from the 8th week, when Sertoli 

cells begin to form cord-like structures, the future 

seminiferous tubules (189) (Fig. 19). In the ovary, AMH 

production is detectable at 24 week gestation in granulosa 

cells of preantral follicles (265). The timing of the expression 

of AMH is crucial. In the male, high amounts of AMH must 

be expressed before Müllerian ducts lose their 

responsiveness, i.e. before the end of the 8th week in the 

human fetus. In the female, to avoid destroying the 

reproductive tract, it must be expressed after the window of 

sensitivity of the Müllerian ducts to its action has closed. 

Thus, in both sexes, the initiation of AMH transcription is 

under tight transcriptional control.  

 

In the mammalian testis, but not in reptiles (413) or birds 

(421), SOX9 (97, 112, 113, 422, 423) -and to a lesser extent 

SOX8 (114)- triggers AMH expression in Sertoli cells by 

binding to a specific response element on the AMH 

promoter. Transcription factors SF1 (112, 113, 422, 424-

431), GATA4 (113, 427, 432-438), WT1 (425, 439) 

increase, whereas DAX1 (425) and β-catenin (439) reduce, 

SOX9-activated AMH transcription either by binding to 

specific response elements or by protein-protein interaction 

(440, 441). In vivo, genes can affect AMH levels indirectly 

through their impact on testicular determination instead of 

acting on gene transcription.  

 

Although initially gonadotropin-independent, AMH 

production falls under FSH control later in fetal life and after 

birth (113, 197, 442-444). FSH regulates AMH transcription 

through the FSH receptor-Gsα protein-adenylate cyclase-

cyclic AMP pathway, resulting in a stimulation of protein 

kinase A (PKA) activity. PKA mediates phosphorylation of 

the transcriptional regulators SOX9, SF1 and AP2, as well 

as of IκB which releases NFκB. In the nucleus these factors 

activate AMH transcription by binding to their specific 

response elements on the AMH promoter (Fig. 21). LH and 

hCG do not have a direct effect on Sertoli cell AMH 

expression, but affect testicular AMH production through 

androgen action, as explained below. 
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FIGURE 21. Regulation of testicular AMH production. Left: the onset of AMH expression is gonadotropin-

independent and depends on SOX9 binding to the proximal AMH promoter. Subsequently, SF1, GATA4 and WT1 

enhance AMH expression by binding to specific promoter sequences or by interacting with transactivating 

factors. DAX1 impairs GATA4 and SF1 binding to the AMH promoters, resulting in lower AMH expression levels. 

Right: Later in fetal and postnatal life, FSH regulates AMH production through the FSH receptor-Gsα protein-

adenylate cyclase (AC)-cyclic AMP (cAMP) pathway, resulting in a stimulation of protein kinase A (PKA) activity. 

PKA mediates phosphorylation of the transcriptional regulators SOX9, SF1 and AP2, as well as of IκB which 

releases NFκB. In the nucleus these factors bind to their specific response elements in proximal (SOX9, SF1) or 

distal (AP2 and NFκB) regions of the AMH promoter. 

Right figure reprinted from ref. (113): Lasala C, Schteingart HF, Arouche N, Bedecarrás P, Grinspon R, Picard JY, 

Josso N, di Clemente N, Rey RA. SOX9 and SF1 are involved in cyclic AMP-mediated upregulation of anti-

Müllerian gene expression in the testicular prepubertal Sertoli cells SMAT1. American Journal of Physiology – 

Endocrinology and Metabolism 2011; 301: E539-E547, Copyright 2011 the American Physiological Society. 

http://ajpendo.physiology.org/content/301/3/E539.abstract?sid=3829d833-dfdf-4310-bd6f-e7481c62be06 

 

At puberty, FSH stimulation is antagonized by androgens 

resulting in a steep fall in AMH secretion by Sertoli cells 

(445). Androgen action requires the presence of the 

androgen receptor in Sertoli cells. This occurs relatively late 

after birth (Fig. 22) (204, 205, 446) allowing  both AMH and 

testosterone to reach high levels in fetuses and neonates. 

In androgen-insensitive patients, affected by mutations of 

the androgen receptor, AMH levels are abnormally elevated 

during the perinatal and pubertal stages (447, 448), due to 

unopposed stimulation by FSH. Androgens act directly on 

pubertal Sertoli cells to inhibit AMH promoter activity in the 

presence of the androgen receptor (429), even though the 

AMH promoter does not carry consensus androgen 

response elements (449). For androgens to repress AMH 

expression, the existence of intact sites for binding of the 

transactivating factor SF1 on the AMH promoter is crucial, 

suggesting that the inhibition of AMH promoter activity by 

androgens could be due to protein–protein interactions 
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between the ligand-bound androgen receptor and SF1 or by 

blockage of SF1 binding to its sites (429). 

 

Gonadotropins and steroid also regulate AMH in the ovary. 

FSH stimulates AMH transcription in cultured granulosa 

cells (450) while estrogens has differential effects according 

to which estrogen receptor is involved (451), while LH has 

no effect in normal cells (452).  

 

 
FIGURE 22. Ontogeny of testicular AMH production. In the mammalian fetal testis, AMH expression is triggered 

by the increase of SOX9 levels. It is not prevented by the rise of intratesticular levels of testosterone because 

fetal Sertoli cells do not express the androgen receptor (AR). After birth the number of Sertoli cells expressing 

the AR progressively increases. At puberty, when testosterone increases again, AR is present and AMH 

production is inhibited. 

 

AMH is measurable in human serum by ELISA. Initially, the 

procedure was used by pediatric endocrinologists to 

measure testicular AMH in boys, hence the first 

commercially available kits were suited to the high level of 

AMH concentration of prepubertal males (448). Following 

the discovery that AMH serum concentration in women 

mirrors ovarian reserve (453, 454), AMH assay has become 

a standard procedure in assisted reproduction centers and 

more sensitive methods, adapted to the low concentration 

of AMH in female serum, were developed (455)(456)(457). 

In parallel, automated assays, e.g. the 

electrochemiluminescence Roche Elecsys assay (458) and 

the Beckman Coulter Access AMH assay (459), are 

progressively gaining ground, due to increased 

reproducibility and accelerated turnaround time, only 18 

minutes for the Roche Elecsys assay. There is reasonable 

correlation between the different manual kits after 

manipulation of standard curves by manufacturers but not 

between manual assays and automated ones, which yield 

20-30% lower values (458, 460). It follows that AMH values 

obtained with different methods are not interchangeable 

(461). Since clinicians are not usually aware of the problem, 

serious interpretation errors may arise during patient follow-

up. An international standard of human recombinant AMH 

needs to be developed, particularly since the Immunotech 

assay upon which many normative values have been based 

(462-464) has been pulled off the market.  

 

The uncleaved AMH precursor and non-covalent cleaved 

AMH are both detectable by commercial ELISA kits, but 

attempts to discriminate between the various AMH forms 

have not proven clinically rewarding (465-468).  
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AMH is an exceptionally stable biomarker, variations during 

the menstrual cycle (469, 470) and diurnal variations in men 

(471) are minimal. Measurement of AMH in serum has 

diagnostic applications in disorders of sex development 

(324, 472) and as a marker of prepubertal testicular function 

in boys (473-477). In women, AMH levels are a reliable 

marker of follicular reserve (453, 454) and may be used with 

relative accuracy to predict the onset of menopause (478) 

or to follow the evolution of granulosa cell tumors (479, 480). 

Some AMH mutations with reduced in vitro bioactivity are 

associated with premature ovarian insufficiency (481). In 

contrast, the clinical usefulness of AMH in seminal fluid in 

men with non-obstructive azoospermia is debatable (482). 

Further discussion of the diagnostic and potentially 

therapeutic value of AMH in the adult ovary and testis is 

beyond the scope of this review. 

 

AMH Transduction: Type I and II AMH Receptors 

 
Like other members of the TGFβ family, AMH signals 

through two distinct membrane-bound receptors, both 

serine/threonine kinases. Unlike other members of the 

TGFβ family truncated forms of the AMH primary receptor 

AMHR2 are not secreted, unless the signal sequence is 

replaced by the TGFβ one, suggesting that the AMHR2 

signal sequence is defective (483). A three-dimensional 

model of extra- and intracellular domains built by analogy 

with crystallized receptors of the TGFβ family (Fig. 23) has 

served to analyze structure/activity relationship of the 

receptor molecule (483, 484).  

 

The AMHR2 gene, located on chromosome 12q13.13, 

spans 8 kb pairs and is divided into 11 exons. Exons 1-3 

code for the signal sequence and extracellular domain, 

exon 4 for most of the transmembrane domain, and exons 

5-11 for the intracellular serine/threonine kinase domains 

(485). AMHR2 is expressed in the mesenchymal cells which 

surround the Müllerian duct, and also in Sertoli, granulosa 

(486, 487), Leydig (419) and germ cells (389), endometrium 

(390), neurons (391, 393) and hypothalamus (392). 

Expression of the receptor in the peri-Müllerian 

mesenchyme requires the presence of the signaling 

molecule WNT7A (359). The activity of AMHR2 is enhanced 

by WT1 (488) and by SP600125, an inhibitor of the c-Jun N-

terminal kinase (489). 

 

 
FIGURE 23. Molecular models of AMHR2 extracellular and intracellular domains. (A) The extracellular domain 

exhibits the general three-finger toxin fold of type II receptors and displays five disulfide bridges, four of which 

are conserved. Five amino acids (Phe62, Met76, Arg80, Asp81, and Thr108), implicated in binding AMH, are 
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shown as spheres. (B) The intracellular domain exhibits the general fold of a two-domain kinase, with an N-lobe 

consisting mainly of a five-stranded β-sheet and a C-lobe, which is mainly α-helical. Some of the residues 

affected by PMDS mutations (Arg54, His254, Arg406, Asp426, Asp491, and Arg504) are shown as sticks. The inset 

shows residues affected by the p.((Gly445_Leu453del) mutation. Reprinted with permission from Elsevier, from 

ref. 364 (490): Josso N, Picard JY, Cate RL (2013). The Persistent Müllerian Duct Syndrome. In: New MI, Parsa A, 

Yuen TT, O'Malley BW, Hammer GD, eds. Genetic Steroid Disorders. New York, NY (USA): Elsevier 

 

Binding of the receptor to its specific ligand requires 

proteolytic cleavage of the AMH precursor to yield the non-

covalent complex AMH, but unlike other TGFβ family 

members, prior dissociation of this complex is not required. 

Dissociation is triggered by binding to AMHR2 (396) and is 

followed by the assembly of a tetrameric C-

terminus/receptor complex with two molecules of type I 

receptor. Activated type I receptors then phosphorylate 

receptor-SMADS 1/5/8, which associate with SMAD4 and 

are then shuttled to the nucleus where they regulate 

transcription of target genes. (Fig. 24).  

The AMH type II receptor is subject to processing (491). 

Increased expression of the receptor results in the removal 

of most of its extracellular domain and subsequent retention 

in the endoplasmic reticulum, resulting in a constitutive 

negative regulation. 

 

The primary AMH receptor, AMHR2, is AMH-specific, a 

unique example of exclusive ligand-receptor pair within the 

TGFβ family (492). This specificity may be due to the 

presence of charged residues at the ligand binding interface 

(493). In contrast,  the downstream elements of the AMH 

transduction pathway are shared with the bone 

morphogenetic protein family, namely ALK2 (or ACVR1, 

Activin a receptor, type I) ALK3 (or BMPR1A, Bone 

morphogenetic protein receptor, type IA) and all three BMP 

receptor SMADS, 1, 5 and 8 (494-496). Another BMP 

receptor, ALK6 (or BMPR1B, Bone morphogenetic protein 

receptor, type IB), is engaged by ligand-bound AMHR2 

(494) but has an inhibitory effect on AMH activity (497). 

ALK3 is the more potent AMH type I receptor in the 

Müllerian duct (498), in the Leydig cell (499) and in the 

SMAT1 Sertoli cell line (497) but in its absence, ALK2 is 

capable of transducing the AMH signal (496, 497). 
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FIGURE 24. Model showing processing of AMH, assembly of the AMH receptor signaling complex, and 

intracellular signaling. Cleavage of the AMH precursor results in a conformational change in the C-terminal 

domain, which allows binding of the AMH non-covalent complex to AMRHII. After dissociation of the N terminal 

proregion, the type I receptor is recruited into the complex and phosphorylated by the type II receptor kinase. 

The activated type I receptor can then phosphorylate Smads 1/5/8, which associate with Smad 4, translocate to 

the nucleus and regulate AMH responsive genes. Courtesy of Dr. Richard Cate. Data obtained from ref. (396): di 

Clemente N, Jamin SP, Lugovskoy A, Carmillo P, Ehrenfels C, Picard J-Y, Whitty A, Josso N, Pepinsky RB, Cate 

RL. Processing of anti-Müllerian hormone regulates receptor activation by a mechanism distinct from TGF-β. 

Molecular Endocrinology 24:2193-2206 (2010). http://mend.endojournals.org/content/24/11/2193.abstract 

 

The Persistent Müllerian Duct Syndrome  

 

Mutations of human AMH or AMHR2 (324) and gene 

knockout in mice (500, 501) are associated with a rare form 

of disorder of sex development, the persistent Müllerian 

duct syndrome (PMDS). These XY individuals are externally 

normally virilized, Müllerian duct derivatives are discovered 

incidentally at surgery for either inguinal hernia or 

cryptorchidism (Fig. 25) or following discovery of the 

condition in a sibling. Older patients may seek medical 

attention because of an abdominal tumor, hematuria or 

hemospermia. 
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FIGURE 25. Operative findings in a patient with PMDS. The Fallopian tubes are tightly attached to the testes, 

preventing testicular descent. Note normal male external genitalia. 

Reprinted from ref. (484): Abduljabbar M, Taheini K, Picard JY, Cate RL, Josso N. Mutations of the AMH type II 

receptor in two extended families with Persistent Mullerian Duct Syndrome: lack of phenotype/genotype 

correlation. Hormone Research in Paediatrics 77:291-297 (2012). Copyright 2012 S. Karger AG, Basel, with 

permission. http://www.karger.com/Article/FullText/338343. 

 

In patients with PMDS, as in the normal female, the 

Müllerian ducts differentiate into Fallopian tubes, uterus, 

and upper vagina. They retain their close apposition to 

Wolffian duct derivatives, epididymis, and vas deferens 

while remaining tied to the pelvis by the broad ligament (Fig. 

25). The clinical features of PMDS are similar in AMH and 

AMHR2 mutations and may vary within the same sibship. 

The mobility of the Müllerian structures determines 

testicular location. Bilateral cryptorchidism is observed most 

frequently: the uterus remains anchored to the pelvis, and 

mechanically prevents testicular descent. Alternatively, one 

or both testes may make it into the inguinal canal or the 

scrotum, dragging the uterus along. This may result either 

in unilateral cryptorchidism with a hernia containing the 

uterus on the opposite side, a condition known as “hernia 

uteri inguinalis”. The testis on the opposite side can be 

drawn into the same hemiscrotum by gentle traction or may 

already be present there; this condition typical of PMDS is 

named “transverse testicular ectopia”. It may be the only 

sign of an AMH or AMHR2 mutation in patients with 

normally regressed Müllerian derivatives (502). 

Approximately half the cases present with bilateral 

cryptorchidism, the rest with hernia uteri inguinalis or 

transverse testicular ectopia in similar proportions. The 

descended testis is only loosely anchored to the bottom of 

the processus vaginalis by a thin gubernaculum 4. It is 

exposed to an increased risk of torsion and subsequent 

degeneration (503). Associated abnormalities such as low 

birth weight with or without prematurity or complex 

metabolic syndromes are suggestive of idiopathic PMDS 

unrelated to defects in the AMH pathway. Intestinal 

malformations have been observed in four cases, consisting 

of either jejunal atresia or lymphangiectasis. Skeletal 

malformations suggestive of defects in the BMP pathway 

have not been reported.  

 

Testicular tumors of every denomination, mostly 

seminomas, are a frequent mode of presentation of PMDS 
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in older patients, particularly in settings where 

cryptorchidism has been neglected in childhood. Young 

patients may be affected by germ cell neoplasia in situ (502, 

504). Early orchidopexy is not necessarily 100% effective to 

preserve against testicular degeneration (505, 506). 

Furthermore, the incidence in PMDS adults reaches 33% 

(502) compared to 18% for simple cryptorchidism (507), 

suggesting that misplacement of the testis may not be the 

only factor driving testicular cancer. Evolution depends 

upon the histological type of the tumor; choriocarcinomas 

and mixed germ cell tumors share a dim prognosis.  

 

Uterine tumors occur less frequently, hematuria is usually 

the presenting symptom (508). They should not be 

confused with degeneration of the prostatic utricle often 

mistakenly called “Müllerian” cysts (509). Farikullah et al 

(510) reported 11 cases of Müllerian degeneration in males, 

but only 3 qualified as PMDS. Exceptionally, in an elderly 

PMDS patient, hematospermia may be due to endocrine 

imbalance with low testosterone and high estrogen 

secretion (511). 

 

Infertility is the most common complication of PMDS. 

Pubertal development is normal, spermatogenesis is not 

unheard of (512), yet few patients actually father children 

and stringent evidence of paternity is lacking. In all cases at 

least one testis was in a scrotal position (reviewed in ref. 

(502). There are several causes of infertility: the excretory 

ducts may not be properly connected to the testis or the 

germinal epithelium may be damaged by longstanding 

cryptorchidism. Paradoxically, all fertile PMDS patients 

fathered children before their condition was diagnosed and 

surgically addressed. Surgery may compromise the 

testicular blood supply or the vasa deferentia, particularly if 

hysterectomy is undertaken without proper dissection of the 

male excretory ducts included in the uterine wall. The 

prognosis may improve with modern surgical and assisted 

reproduction techniques. In inbred populations where 

fertility is a crucial issue, as in the Middle East (513), genetic 

counseling is recommended and molecular screening 

should be carried out if a consanguineous union is 

contemplated. 

 

Treatment should aim primarily towards the prevention of 

the two main complications of PMDS, cancer and infertility. 

Both goals are served by replacing the testes in the scrotum 

but excising the uterus to allow abdominal testes to descend 

into the scrotum carries significant risks. The primary 

testicular blood supply is through the internal spermatic and 

the deferential arteries. Often the spermatic vessels are too 

short and must be divided to allow orchidopexy. The viability 

of the testis then becomes wholly dependent upon the 

deferential artery, which is closely associated with the 

Müllerian structures and may be severely damaged by 

attempts to remove them (514). Most authors recommend 

partial hysterectomy, limited to the fundus and proximal 

Fallopian tubes, or the simple division of Müllerian 

structures in the midline. If the length of the gonadal vessels 

is the limiting factor; a Fowler–Stephens orchidopexy or 

microvascular autotransplantation (515) may produce good 

results. Intracytoplasmic sperm injection may be helpful in 

the case of ejaculatory duct defects. Orchidectomy is 

inevitable if the testes cannot be brought down. 

 

The serum level of AMH in prepubertal patients depends on 

the molecular origin of the syndrome. Before puberty, the 

level of serum AMH allows easy discrimination between 

AMH and AMHR2 mutations. In nearly all patients with AMH 

mutations, AMH levels are extremely low or undetectable. 

AMH gene mutations with a normal AMH serum level are 

very unusual and should be regarded with suspicion. We 

have documented only one such case, a Gln 496 His 

mutation, which is thought to affect binding of AMH to its 

type 1 receptor ALK3 (397). Menabo et al (516) reported a 

case of PMDS attributed to AMH variants with a normal 

AMH level but they did not rule out an AMHR2 mutation. 

AMH levels are relatively low in normal infants shortly after 

birth, but then repeat determinations show a progressive 

rise with increasing age. 

 

Serum AMH levels are within normal limits for age in 

AMHR2 mutations and in idiopathic PMDS, unrelated to 

defects in known components of the AMH pathway. 

Obviously, serum AMH is not detectable, whatever the 

genotype, in the case of anorchia (503) and may be 

abnormally low in cryptorchid patients. Testosterone and 

gonadotropin levels are normal for age. After pubertal 

maturation, serum AMH declines physiologically, and it may 

be difficult to discriminate between AMH and AMHR2.  

 

Approximately 80% of PMDS cases are due to AMH or 

AMHR2 mutations, in about equal proportions. The first 

AMH mutation was reported in 1991 (517) in a Moroccan 

family. At the time of writing, early 2020, a total of 84 families 

affected by AMH mutations have been published in the 

world literature. All exons are affected (Fig 26). Exon 1, the 
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site of most recurrent mutations (Table 6) is hit hardest, 

exon 5 is next but when the number of base pairs is taken 

into account, the relatively short exon 2 with its 13 mutations 

is the runner up. Although it is shorter, the 3’ end of exon 5 

that codes for the bioactive C-terminal domain of AMH is 

targeted nearly twice as often as the 5’ end.  

 

 
FIGURE 26. Mutations of the AMH and AMHR2 genes in the Persistent Müllerian Duct Syndrome (PMDS). 

Mutations of the AMH (top) and AMHR2 genes (bottom) in the Persistent Müllerian Duct Syndrome (PMDS). The 3' 

end of the AMH gene (picture in red) codes for the C-terminal domain, responsible for bioactivity, yet mutations 

are spread along the whole length of the gene. Similarly, mutations of the AMHR2 affect intracellular and 

extracellular domains alike. 

 

Altogether, 67 different AMH alleles bearing all types of 

mutations have been described in PMDS. Missense and 

stop mutations are the most frequent, insertions are rare 

(see details in ref. (502). One deletion is of particular 

interest, because it disrupts the SF1 response element 

located at -228 in the AMH promoter. Inactivation of the -

102 site does not prevent Müllerian regression in transgenic 

mice. The greater impact of the -228 deletion detected in 

the PMDS patient may be due to the vicinity of the -102 SF1 

site to a GATA site, to which SF1 can indirectly bind through 

protein/protein interaction with GATA4. This hypothesis is 

supported by transactivation experiments showing that 

destruction of the GATA site adjacent to SF1-102 results in 

inactivation of the AMH promoter (430). 

 

A few AMH mutations have been reproduced by site-

directed mutagenesis, cloned into an expression vector and 

transfected into COS cells to allow study of the secretion of 

the mutant protein into the culture medium (397). These 

studies confirm that most single nucleotide variations of the 

AMH gene act by affecting the stability and secretion of the 

hormone, explaining why nearly all patients with AMH 

mutations, regardless of the site of the mutation, have a very 

low level of circulating AMH. 

 

TABLE 6. Recurrent (n≥4) Mutations of AMH in PMDS 

Exon cDNA Protein Families (n) 

1 c.35T>G p.(Val12Gly) 4 

1 c.283C>T p.(Arg95*) 6 

1 c.301G>A p.(Gly101Arg) 4 

1 c.343_344delCT p.(Leu115Thrfs*58) 5 

1 c.367C>T p.(Arg123Trp) 7 

2 c.500A>G p.(Tyr167Cys) 5 
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Up to now, 90 families with various AMHR2 mutations have 

been published, the first in 1995 (485). Since AMHR2 

mutations lead to PMDS by blocking response to AMH, the 

level of circulating AMH is normal for age, in contrast to 

PMDS due to AMH mutations. 

 

A total of 75 independent mutant alleles have been 

described, targeting all 11 exons and 5 introns; their location 

within the gene are shown in Fig.26B. Most are missense or 

stop mutations. Two cases of classical PMDS due to a 

microdeletion of the chromosomal region 12q13.13, the 

locus of the gene for AMHR2, have been reported. One 

case involved a homozygous microdeletion of five exons of 

the AMHR2 gene. In the second case, the whole AMHR2 

gene was deleted from the maternally inherited 

chromosome. The patient’s paternal allele carried a stop 

mutation, which was initially thought to be homozygous by 

Sanger sequencing (518).  

 

The most prevalent mutation, a 27-base deletion in exon 10 

(c.1332_1358del) pictured on Fig. 23 results in the deletion 

of 9 amino acids from an alpha helix within the kinase 

domain and affects 37% of families with receptor mutations. 

The proportion reaches 62% of Northern European families, 

where it probably represents a founder effect. This mutation 

is easily detected by PCR, without the need for sequencing.  

 

Not all PMDS cases have benefited from molecular study. 

In many countries, genetic studies are not readily available 

for PMDS, and cases have been published with only clinical 

data (519, 520). Owing to lack of molecular 

characterization, it is difficult to interpret the unusual sex-

linked familial transmission of PMDS reported in two 

families (521, 522). 

 

In approximately 20% of PMDS patients, careful 

sequencing of AMH and AMHR2 exons and adjacent 

portions of introns have failed to yield an explanation. Either 

a mutation has escaped detection or other genes are 

involved. The AMH and BMP families share type I receptors 

and cytoplasmic effectors, which could be implicated in 

PMDS. Initially, BMP receptors were considered unlikely 

candidates because an intact BMP pathway is required for 

survival beyond the embryonic stage. However, this might 

not hold for mild missense mutations (523). Alternatively, 

idiopathic PMDS could be caused by mutations in other 

genes involved in Müllerian duct development/regression 

such as β-catenin (320) or patterning genes not specifically 

involved in reproductive development. Studies with next 

generation sequencing are underway to resolve this issue. 

Women homozygous for AMH or AMHR2 mutations are 

normally fertile but it is too early to know whether, similar to 

“AMH-null” mice (286), they will experience premature 

ovarian failure due to follicular depletion 

 

Androgens 

 

Testosterone or dihydrotestosterone (DHT), binding to the 

same androgen receptor (AR), are the main factors involved 

in maintenance of the Wolffian duct and differentiation of 

male sex accessory organs and external genitalia.  

 

Testosterone Biosynthesis 

 
Beginning at 9 weeks, testosterone is produced from 

cholesterol by chorionic gonadotropin stimulation of fetal 

Leydig cells through the coordinated action of steroidogenic 

enzymes (Fig. 27 and Table 7), most of which are also 

expressed in the adrenal gland, explaining why many 

steroidogenic disorders are common to the testis and 

adrenal. Most steroidogenic enzymes are either 

hydroxysteroid dehydrogenases or cytochromes P450, 

residing either on the mitochondrial membrane (type I) or in 

the endoplasmic reticulum (type II) (524). The initial step in 

steroidogenesis, conversion of cholesterol into 

pregnenolone, is mediated by the P450 side-chain cleavage 

enzyme (P450scc), a type I cytochrome located at the inner 

mitochondrial membrane. However, the inner mitochondrial 

membrane contains relatively little cholesterol, so the rate-

limiting step of steroidogenesis is the transfer of cholesterol 

from the outer to the inner mitochondrial membrane. This 

step is dependent on steroidogenic acute regulatory protein 

(StAR) regulated essentially by a trophic hormone 

stimulated cAMP/PKA pathway (525). The exact 

mechanism of StAR-mediated cholesterol transport into the 

mitochondria is not completely understood. 

 

Pregnenolone is subsequently metabolized into 17α-

hydroxypregnenolone and dehydroepiandrosterone 

(DHEA) by P450c17. This type II cytochrome bears two 

distinct activities: a 17α-hydroxylase activity responsible for 

the conversion of pregnenolone to 17α-

hydroxypregnenolone and a 17-20 lyase activity, capable of 

converting 17α-hydroxypregnenolone to DHEA. P450c17 
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receives electrons from NADPH via the flavoprotein P450 

oxidoreductase (POR) (526, 527). Cytochrome b5 is 

required for optimal 17,20 lyase activity (528, 529). 

P450c17 and its partner proteins also convert the Δ4 

compound progesterone into 17α-hydroxyprogesterone and 

Δ4-androstenedione.  

 

 
FIGURE 27. Steroidogenesis. Steroidogenesis: the “classic” and “backdoor” pathways for dihydrotestosterone 

(DHT) synthesis. See Table 7 for enzyme nomenclature. DHEA: dehydroepiandrosterone, DHP: 

dihydroprogesterone. Reprinted from ref. (530): Fluck CE, Meyer-Boni M, Pandey AV, Kempna P, Miller WL, 

Schoenle EJ, Biason-Lauber A. Why boys will be boys: two pathways of fetal testicular androgen biosynthesis 

are needed for male sexual differentiation. American Journal of Human Genetics 89:201-218 (2011). Copyright 

2011, with permission from Elsevier.  http://www.cell.com/AJHG/abstract/S0002-9297(11)00262-X (top figure), and 

ref. (531): Wilson JD, Shaw G, Leihy ML, Renfree MB. The marsupial model for male phenotypic development. 

Trends in Endocrinology and Metabolism, 13:78-83 (2002), Copyright 2002, with permission from Elsevier. 

http://www.sciencedirect.com/science/article/pii/S1043276001005252 (bottom figure). 

 

Two additional enzymes, 3β- and 17β-hydroxysteroid 

dehydrogenases are required for the synthesis of 

testosterone. Two isoforms of 3ß-hydroxysteroid 

dehydrogenases have been identified: 3ß-HSD type 1, 

expressed mainly in the placenta, mammary gland and skin, 

and 3ß-HSD type 2, expressed in the gonads and adrenal 
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glands. Only mutations in the type 2 gene result in 

congenital adrenal hyperplasia and/or DSD (532, 533). 

 

The final testicular enzyme in testosterone biosynthesis is 

17ß-hydroxysteroid dehydrogenase (17β-HSD), formerly 

known as 17-ketosteroid reductase, which reduces 17-

ketosteroids to 17β-hydroxysteroids, i.e. Δ4-

androstenedione to testosterone and the Δ5 steroid DHEA 

to androstenediol. Three isoforms of 17ß-HSD have been 

identified. The type 3 isoform, HSD17B3, is expressed in 

the testis and is the only one involved in fetal male sexual 

differentiation (534). XY patients with impaired HSD17B3 

usually develop with female or ambiguous external 

genitalia; however, Wolffian ducts derivatives are present in 

most, probably due to accumulation of the weak androgens 

Δ4-androstenedione and Δ5-DHEA. The type 2, HSD17B2, 

is expressed in the liver and has the capacity for 

testosterone synthesis. This could explain the virilization 

observed at puberty in XY patients with HSD17B3 

deficiency (534, 535). 

 

TABLE 7. Proteins Involved in Androgen Production 

Protein Main Role Gene Chromosome  

Steroidogenic acute Regulatory 

Protein (StAR) 

Cholesterol trafficking STAR 8p11.2 

P450scc (P450 side chain 

cleavage enzyme) 

Cytochrome P450, family 11, 

subfamily A, polypeptide 1 

Cholesterol side-chain 

cleavage 

CYP11A1 15q24.1 

P450c17 (17α-

hydroxylase/17,20-lyase) 

Cytochrome P450, family 17, 

subfamily A, polypeptide 1 

Metabolizes pregnenolone CYP17A1 10q24.32 

P450 oxidoreductase (POR) Electron donor to P450c17 POR 7q11.23 

Cytochrome b5, type A Regulation of 17,20-lyase 

activity 

CYB5A 18q22.3 

3β-hydroxysteroid 

dehydrogenenase 2 (3β-HSD 2) 

Conversion of Δ5 to Δ4 

steroids 

HSD3B2 1p12 

17β-hydroxysteroid 

dehydrogenenase 3 (17β-HSD 

3) 

Reduction of 17 keto to 17β-

hydroxysteroids 

HSD17B3 9q22.32 

5α-reductase type 2 Reduction of T to DHT SRD5A2 2p23.1 

5α-reductase type 1  Reduction of progesterone 

and 17OH-progesterone 

SRD5A1 5p15.31 

Aldo-keto reductase family 1, 

member C2 

3α-hydroxysteroid 

dehydrogenase, type III (3α-

HSD) 

Oxidoreduction of 3α-

androstanediol/ DHT * 

AKR1C2 10p15.1 

Aldo-keto reductase family 1, 

member C4 

3α-hydroxysteroid 

dehydrogenase, type I 

id but less efficient AKR1C4 10p15.1 

17β-hydroxysteroid 

dehydrogenase 6 (17β-HSD 6) 

Retinol dehydrogenase 1 

3α-hydroxysteroid epimerase 

Oxidizes 3α-androstanediol to 

DHT 

HSD17B6 

RODH 

12q13.3 
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P450aro (aromatase) 

Cytochrome P450, family 19, 

subfamily A, polypeptide 1 

Aromatizes androgens to 

estrogens 

CYP19A1 15.q21.2 

Steroidogenic factor 1 (SF1) 

Nuclear receptor subfamily 5, 

group A, member 1 

Adrenal-4 binding protein 

(AD4BP) 

Fushi tarazu factor 1 (FTZF1) 

Regulates several 

steroidogenic enzymes 

NR5A1 9q33.3 

* The direction of the reaction depends on cofactor availability (530). The four last enzymes act exclusively in the alternate 

pathway of DHT synthesis. 

 

DHT Production: Classic and Alternative 

(Backdoor) Pathways 

 
Testosterone itself is not a very active androgen; its 

metabolite DHT is the main virilizing agent during male 

reproductive development. The conversion of testosterone 

to DHT amplifies the androgenic signal through several 

mechanisms. DHT cannot be aromatized to estrogen, and 

thus its effects are purely androgenic. Testosterone and 

DHT bind to the same androgen receptor but DHT does so 

with greater affinity which results in a stabilization of the 

hormone-receptor complex for a longer period of time (536). 

 

In the classic pathway of DHT production (Fig. 27, top), 

testosterone is converted to DHT inside the target cell by 

the enzyme 5α-reductase type 2 coded by the SRD5A2 

gene expressed in fetal genital skin, in male accessory sex 

glands and in the prostate (537). In tissues equipped with 

5α-reductase at the time of sex differentiation, such as the 

urogenital sinus and external genitalia, DHT is the active 

androgen (538). During embryogenesis, 5α-steroid 

reductase type-2 encoded by the SRD5A2 gene plays a 

central role in the differentiation of the male phenotype. 

Patients with 5α-reductase deficiency virilize very poorly at 

these levels (539, 540). Another functional isoenzymes of 

5α-reductase, with a different pH optimum, has been 

characterized (537): 5α-reductase type 1, transiently active 

in newborn skin and scalp and permanently expressed in 

liver after birth and in skin from the time of puberty, is not 

expressed in the fetus. Tissue distribution and ontogeny of 

both isoforms as well as mutation studies in humans with 

46,XY DSD clearly indicate that type 2 plays the major role 

in sexual differentiation but the emergence of type 1 

probably accounts for the pubertal virilization of the type 2-

deficient patients. 

 

Testosterone, however, is not an obligatory precursor of 

DHT (Fig. 27, bottom). Observations in a marsupial, the 

tammar wallaby (531), have shown that the testis itself 

produces biologically significant amounts of DHT through 

an alternate or “backdoor” pathway without using 

testosterone, DHEA or androstenediol as intermediates. 

Additional enzymes not part of the classic pathway can 

mediate the direct oxidation of 5α-androstanediol to DHT 

(524, 530). This "backdoor" pathway contributes to 

virilization in the human fetus as demonstrated by the 

genetic studies of Flück and her colleagues (530) in two 

families with 46,XY DSD. After they failed to demonstrate 

mutations in known steroidogenic enzymes, they explored 

genes acting in the alternate pathway of androgen 

synthesis. This led to discovery of mutations in the genes 

AKR1C2 and AKR1C4, alias 3α-hydroxysteroid 

dehydrogenase (or reductase) type I and type III. In the 

alternate pathway these enzymes catalyze the reduction of 

dihydroprogesterone and 17OH-dihydroprogesterone to 

allopregnanolone and 17OH-allopregnanolone, the 

precursor of androsterone and androstanediol. Their role in 

the oxidation of the latter to testosterone is hypothetical 

because they have very high affinity for NADP(H), which 

favors reductive reactions and low affinity for NAD(H) which 

favors the opposite, thus they are expected to function 

primarily as a reductase (541). AKR1C2 is expressed in the 

fetal, but not the adult testis, AKR1C4 is expressed at low 

levels in both tissues. The deleterious effect of AKR1C2/4 

mutations proves that testicular DHT synthesis through the 

alternate pathway is required for normal fetal sex 

differentiation. 

 

Gonadotropin Control of Testosterone 

Production  
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Testosterone production by the human fetal testis is 

detectable at 9 weeks, peaks between 14 and 17 weeks and 

then falls sharply, so that in late pregnancy the serum 

concentrations of testosterone overlap in males and 

females. Gonadotropin stimulation is not required for the 

initiation of steroid synthesis (220) but is necessary to 

maintain Leydig cell function subsequently. Testicular and 

serum levels of testosterone are closely correlated with 

human chorionic gonadotropin (hCG) concentration; the 

peak of fetal testicular steroidogenic activity coincides with 

the acme of concentrations of hCG in the circulation. In adult 

Leydig cells, the capacity to respond to sustained 

gonadotropic stimulation by increased androgen production 

is curtailed by the development of a refractory state, due to 

receptor down-regulation (542). Fetal Leydig cells 

apparently escape desensitization, allowing them to 

maintain a high testosterone output during the several 

weeks necessary to male differentiation of the genital tract. 

The fetal pituitary takes over when chorionic gonadotropin 

declines in the 3rd trimester (reviewed in ref. (543) (Fig. 28). 

Impaired LH secretion in 46,XY fetuses does not result in 

DSD because the most important steps of sexual 

differentiation, with the exception of penile growth, occur at 

the time Leydig cells are controlled by hCG.  

 

In contrast, mutations in the LH/CG receptor of Leydig cells 

result in severe virilization defects (544). LH and hCG signal 

through a common seven-transmembrane domain receptor 

coupled to G proteins present on testicular Leydig cells. The 

human gene located on chromosome 2p21, contains 11 

exons. The first ten encode a long N-terminal extracellular 

domain responsible for hormone binding, while the 11th 

exon encodes the whole transmembrane domain, involved 

in the cAMP/PKA signal transduction pathway. A 

functioning LH/CG receptor is absolutely necessary to 

achieve a normal development of the fetal Leydig cell 

population and androgen production. Loss of function 

mutations lead to 46,XY DSD (reviewed in ref. (545), with 

the exception of the deletion of exon 10, which was 

identified in a patient with normal male phenotype but lack 

of pubertal development (546, 547). This suggests that 

exon 10 is required for signal transduction of pituitary LH but 

not hCG. 
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FIGURE 28. Control of testosterone production in the human fetus. Note the low testosterone 

concentration during the last trimester, at the time that hCG production by the placenta has abated. 

Data obtained from ref. (548): Winter JSD, Faiman C, Reyes F (1981). Sexual endocrinology of fetal 

and perinatal life. In: Austin CR, ed. Mechanisms of Sex Differentiation in Animals and Man. London: 

Academic Press; p.205-253. 

 

The Androgen Receptor  

 

Testosterone and DHT exert their action on androgen-

dependent tissues by binding to the androgen receptor, a 

member of the steroid receptor family (Fig. 29). Mutations 

of this receptor lead to the androgen insensitivity syndrome, 

a relatively common disorder of sex development typically 

characterized by a female external genital appearance in 

XY patients despite a normal or excessive production of 

testicular hormones (see ref. (549) for review). The 

androgen receptor is encoded by a single-copy gene 

located on the long arm of the X chromosome, locus Xq12 

(550). It spans 75-90 kb and its open reading frame of 2.75 

kb comprises 8 exons. Exon 1 is the longest and codes for 

the amino-terminal transactivation domain. A highly 

polymorphic CAG triplet containing 14-35 repeats towards 

the 5’-end of exon 1, is useful as a genetic marker for 

inheritance of X chromosomes. Interestingly, expansion of 

the trinucleotide repeat which encodes this long tract of 

glutamine residues segregates with X-linked spinal and 

bulbar atrophy a degenerative neuropathy characterized by 

the accumulation of the mutated receptor in the nucleus and 

cytoplasm of motor neurons (reviewed in ref. (551). Exons 

2 and 3 code for sequences containing two zinc fingers 

implicated in DNA binding. Most mutations occur in exons 4 

to 8, which encode the steroid hormone binding domain. 

The 5’-portion of exon 4 codes for the hinge region between 
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the DNA- and steroid-binding domains, and plays a 

regulatory role (552). A complete database of androgen 

receptor mutations is available from McGill University in 

Montreal (553). 

 

In contrast to receptors for other steroid sex hormones, 

which reside in the nucleus even in the absence of ligand 

binding, the androgen receptor resides mainly in the 

cytoplasm, associated with heat-shock and other 

chaperone proteins, in the absence of hormone and 

translocates into the nucleus in the presence of ligand 

(554). Nuclear localization is controlled by a nuclear 

localization signal spanning the second zinc finger and the 

hinge region competing with an androgen-regulated nuclear 

export signal in the ligand binding domain (555). The 

androgen/AR complex can also signal through non-DNA 

binding-dependent pathways. However, the physiological 

relevance of these actions remaining largely unknown 

(554). 

 

The androgen receptor binds to specific DNA motifs, the 

androgen response elements (ARE), present in the 

promoter regions of androgen-activated genes. The 

consensus or classic ARE consists of two palindromic half 

sites spaced by three base pairs 

(AGAACAnnnTGTTCT).while the so-called "selective" 

AREs, such as the one in intron 1 of the SRD5A2 gene (556) 

resemble direct repeats of the same hexamer (557). After 

binding to AREs on the promoters of androgen-responsive 

genes, the androgen receptor regulates their transcriptional 

activity. It is aided in this task by co-regulators, partner 

proteins that facilitate assembly of the preinitiation complex 

through chromatin remodeling. These include the p160 

family of coactivators, which interact selectively with the 

agonist-bound form of AR (558-560). Attempts at blocking 

the androgen receptor by preventing its interaction with co-

activators are part of the therapeutic strategy in prostate 

cancer (554). 

 

 
FIGURE 29. Androgen receptor protein, cDNA and gene. 

 

The Case of the Wolffian Ducts: The Role of Local 

Testosterone 

 

In fetal Wolffian ducts, 5α-reductase is expressed only after 

the ambisexual, critical, stage of male sex differentiation, 

thus testosterone itself, not DHT, saves them from 

degeneration (537, 538). Because of its close proximity to 

the testis, the Wolffian duct is exposed to a very high local 

concentration of testosterone, a source of androgen not 

available to organs receiving testosterone only via the 

peripheral circulation (Fig. 30) (297). Patients with androgen 

insensitivity whose androgen receptor retains very low but 
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significant residual activity have a female phenotype but 

retain an epididymis or vas deferens (561). Wolffian duct 

differentiation is programmed during a critical time window, 

between 15.5 and 17.5 dpc in the rat fetus. Because the 

androgen receptor is expressed in the Wolffian duct stroma 

but not in the epithelium during this time, Wolffian duct 

differentiation is likely to be dependent on androgen-

mediated signaling from the stroma to the epithelium (562). 

 

Two phase can be described in the development of the 

Wolffian ducts (297). In the first phase, testosterone induces 

the stabilization of the ducts (in rodents, this occurs 

between embryonic days 13 and 16). Afterwards the 

Wolffian ducts undergo elongation and convolution of the 

cranial end, where the epididymis and vas deferens 

differentiate, and the seminal vesicles form at the caudal 

end. 

 

Control of Testicular Descent 

 

Androgens are required to mediate the disappearance of 

the cranial suspensory ligament (563, 564) and later for the 

inguinoscrotal phase of testicular descent. The mechanism 

of androgenic action on the gubernaculum is controversial. 

Androgens could act through the genitofemoral nerve and 

the neuropeptide calcitonin gene-related peptide (565, 

566). Thus, any condition associated with decrease of fetal 

testicular production or action may impair testicular descent. 

 

The first, transabdominal, phase of testicular descent is 

controlled by Insulin-like factor 3 (INSL3), a member of the 

insulin/relaxin hormone superfamily secreted by Leydig 

cells, signaling through its G protein-coupled receptor 

LGR8, now known as relaxin family peptide receptor 2 

(RXFP2) (217, 567). INSL3 acts by inducing male 

development of the gubernaculum testis. Mutations of 

INSL3 have been detected in cryptorchid patients (568), 

similarly deletion of Rxfp2 targeted to mesenchymal 

gubernacular cells leads to high cryptorchidism in mice 

(569). Prenatal DES treatment, which is associated with 

cryptorchidism, impairs Insl3 expression in mouse testis 

and interferes with gubernacular development (570). 

 

 
FIGURE 30. Respective roles of testosterone(T) and dihydrotestosterone (DHT) in sex differentiation. Normal 

androgen physiology in mammals. Testosterone and dihydrotestosterone are assumed to work by binding to the 

same receptor protein and forming hormone–receptor complexes of different allosteric configurations. 

Abbreviations: AR, androgen receptor; 17β-HSD3, 17β-hydroxysteroid dehydrogenase type 3; LHR, luteinizing 
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hormone receptor; 5α-R2, steroid 5α-reductase type 2. Reprinted from ref. (531): Wilson JD, Shaw G, Leihy ML, 

Renfree MB. The marsupial model for male phenotypic development. Trends in Endocrinology and Metabolism, 

13:78-83 (2002), Copyright 2002, with permission from Elsevier. 

http://www.sciencedirect.com/science/article/pii/S1043276001005252. 

 

HORMONAL CONTROL OF FEMALE 

DIFFERENTIATION 
 

Estrogens, Diethylstilbestrol, Xenoestrogens 

 

The conclusion that ovarian hormones are not necessary to 

female development of the female reproductive tract (58, 

59) is supported by the female phenotypic development of 

45,X or 46,XY subjects with bilateral gonadal aplasia and of 

aromatase knockout mice unable to synthesize estrogens. 

Yet, inappropriate estrogen exposure is clearly detrimental. 

The most tragic illustration of estrogen toxicity is the « DES 

story ». Diethylstilbestrol (DES), a synthetic estrogen, was 

widely administered to pregnant women in the early 1940s 

in the hope of preventing abortion. It was later discovered 

that female progeny exhibited severe abnormalities of the 

reproductive tract: vaginal clear-cell adenocarcinoma, 

vaginal adenosis and squamous metaplasia, transverse 

vaginal ridges and structural malformations of the cervix 

and uterus (571, 572).  

 

Environmental chemicals that exert deleterious effects upon 

the endocrine axis are called endocrine disruptors. By 

binding to nuclear hormone receptors, they may affect 

sexual differentiation. Unregulated exposure to 

xenoestrogens such as bisphenol A is now incriminated in 

the occurrence of cryptorchidism and hypospadias (573-

575). Phthalates also adversely affect male differentiation 

by increasing the expression of COUP-TF2, a transcription 

factor which represses steroidogenic enzymes (576). 

Evidence from animal studies show that environmental 

exposure to endocrine disrupting chemicals is at least 

partially responsible (reviewed in (577, 578). Phthalates 

may act as pseudo-estrogens (biphenol A, alias BPA) or as 

antiandrogens (diethylhexylphthalate, alias DEHP) (579); 

however caution is required for interpretation of animal 

studies because of species differences. In human testes, 

germ cells appear the most susceptible to damage by 

phthalates (580). Atrazine, a herbicide widely used in the 

United States, demasculinizes male gonads and reduces 

sperm count by interfering with phosphodiesterase 

enzymes and SF1 (581). 

 

CONCLUSION  

 

A bewildering number of hormones and growth factors is 

involved in sex determination and differentiation, making it 

one of the best studied developmental processes. The 

uncovering of an active genetic pathway towards ovarian 

development has overturned the dogma of a default 

pathway towards female gonadal differentiation. For the 

moment, testicular hormones retain their primacy in 

modeling the reproductive tract but who knows what 

surprises the future holds in store? 
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