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ABSTRACT 

 
In this chapter, we review T1DM, with particular emphasis on the most common immune 
mediated form. Whereas T2DM appears to be an increasing price paid for societal affluence, 
there is also evidence worldwide of a rising tide of T1DM. The increase in understanding of the 
pathogenesis of T1DM has made it possible to consider interventions to slow the autoimmune 
disease process in an attempt to delay or even prevent the onset of hyperglycemia. Although 
the prevention of T1DM is still at the stage of research trials, the trials are often mentioned in 
the lay press.. Current investigations will determine if antigen based therapies can in fact 
abrogate ongoing autoimmunity via immuno-stimulation and 
ultimately prevent diabetes in humans without the risks of general immunosuppression. 
 

 
INTRODUCTION 

Diabetes Mellitus (DM) is a syndrome of disturbed metabolism involving carbohydrate, protein 
and fat which results from the degree of insulin deficiency (absolute or relative) and tissue 
sensitivity to its actions. The combination(s) of insulin deficiency and sensitivity to its actions 
bring about distinct clinical phenotypes with varying severity of disturbed metabolism, most 
conveniently monitored by the degree of hyperglycemia. Absolute insulin deficiency (Type 1 
DM) occurs with autoimmune destruction of insulin secreting β-cells (Type1A) and other 
congenital (genetic defects in the formation or function of the endocrine pancreas), or acquired 
(relapsing pancreatitis and pancreatectomy) conditions. Absolute deficiency of insulin action 
also can occur in the total absence of insulin receptors, a rare event. Relative insulin deficiency 
occurs with genetic or acquired defects in insulin synthesis or secretion that are inadequate to 
overcome the resistance caused by fewer functioning insulin receptors, or resistance to insulin 
action induced by stress, drugs and most commonly obesity(Type2 DM).The acute clinical 
manifestations are those related to hyperglycemia which exceeds renal threshold to result in 
polyuria, increased thirst, dehydration, electrolyte disturbances, weight loss and metabolic 
decompensation, in extreme degree known as diabetic ketoacidosis and non-ketotic 
hyperosmolar coma. The chronic complications include macrovascular (CAD, amputations) and 
microvascular (retinopathy, nephropathy, neuropathy) lesions.  Both the acute and chronic 
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complications are inversely related to the degree of metabolic control achieved.  These brief 
introductory comments form the basis for the etiology, pathogenesis, classification and 
diagnosis of diabetes mellitus. 
 
Classification and diagnosis of diabetes 
 
The American Diabetes Association Standards of Medical Care for Diabetes 20171proposes the 
following classification (Table 1) 
 
Table 1 Classification and diagnosis of diabetes 

1. Type 1 Diabetes owing to autoimmune destruction of insulin secreting β-cells leading to 
insulin deficiency 

2. Type 2 Diabetes owing to inadequate insulin secretion that cannot overcome the insulin 
resistance  

3. Gestational diabetes (diabetes diagnosed in the second or third trimester of pregnant that 
is not clearly overt diabetes) 

4. Diabetes owing to other causes  
- Monogentic diabetes syndrome (neonatal diabetes, maturity-onset diabetes of the 

young [MODY]) 
- Disease of the exocrine pancreas (cystic fibrobsis, pancreatitis, pancreatectomy) 
- Medication induced (glucocorticoids, treatment of HIV/AIDS, immunosuppressants, 

chemotherapeutic agents) 
 

 
Criteria for the Diagnosis of Diabetes Mellitus  
The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus recommends 
the following criteria for diagnosing DM.2 Two replicate fasting glucose levels that exceed 126 
mg/dl (>7 mmol/L) is consistent with diabetes even in the absence of symptoms. Normal fasting 
blood glucose levels of 100 mg/dl or above are considered impaired fasting glucose (IFG). 
Persons with IFG levels (FPG= 100-125 mg/dl (5.66.9 mmol/l) and/or with impaired glucose 
tolerance test (IGT) (2hour post-load glucose 140-199 mg/dl (78.8 mmol/L-11.1 mmol/L) are at 
risk of diabetes and should be observed periodically to detect hyperglycemic progression. 
Replicate, two-hour glycemic responses >200 mg/dl (>11.1 mmol/L) after a standard oral 
glucose tolerance test also indicate diabetes. This stage is often reached before the fasting 
glucose levels rise in T2DM and post-prandial hyperglycemia may precede fasting 
hyperglycemia by months to years. The reliance on only fasting glucose levels is generally more 
useful for identification of impending T1D but not for T2D. 

 
The ADA now recommends that measurement of HbA1c levels can be used in clinical 
practice for the diagnosis of diabetes, since the onset is seldom so acute that it will not be 
reflected in elevated HbA1c levels Table 2. 1,2 

 
Table 2: The American Diabetes Association Diagnostic Guidelines 1 

Stage Latent Impaired glucose 
tolerance 

Diabetes 

Diagnostic criteria Presence of 2 or 
more 
autoantibodies 

Fasting plasma 
glucose: 100-125 
mg/dl 

Fasting plasma 
glucose: ≥126 mg/dL 
OR  
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AND 
Normal glucose 
levels 

OR 
2 hour plasma 
glucose during 
OGTT*: 140-199 
mg/dl 
OR 
HbA1C+: 5.7-6.4% 

2 hour plasma 
glucose during 
OGTT*: ≥200 mg/dl  
OR 
Random plasma 
glucose: ≥200 mg/dl 
with symptoms of 
polyuria, and weight 
loss. 
OR 
HbA1C+ ≥6.5%.  

 
* The OGTT should be performed as described by the World Health Organization (1.75 gm/kg 
up to 75 gm, using a glucose load containing anhydrous glucose dissolved in water). 

 
 
 
ETIOLOGIC CLASSIFICATION 

 
Type 1 Diabetes Mellitus 

 
Type 1 diabetes mellitus (T1DM) comprises several diseases of the pancreatic ß cells which 
lead to an absolute insulin deficiency. This is usually considered to be the result of an 
autoimmune destruction of the pancreatic ß cells (type 1A). Some patients with T1DM with no 
evidence of ß cell autoimmunity have underlying defects in insulin secretion often from inherited 
defects in pancreatic ß cell glucose sensing and from other genetic or acquired diseases. 

 
Type 2 Diabetes Mellitus 

 
Type 2 diabetes mellitus (T2DM) is by far the more common type of diabetes and is 
characterized by insulin resistance resulting from defects in the action of insulin on its target 
tissues (muscle, liver, and fat), but complicated by varying and usually progressive failure of 
beta cells’ insulin secretary capacity. Most patients with T2DM in the US and Europe are obese, 
however in India and China, most T2DM patients have a lean body mass index (BMI), albeit 
with increased visceral and hepatic fat. 
 
Monogenic Diabetes 
 

Monogenic forms of diabetes are characterized by impaired secretion of insulin from pancreatic β 
cells caused by a single gene mutation. These forms comprise a genetically heterogenous group of 
diabetes including, maturity onset diabetes of the young (MODY), permanent or transient neonatal 
diabetes, and mitochondrial diabetes. MODY is the most common form of monogenic diabetes, with 
autosomal dominant transmission of one of several genes encoding a primary defect in insulin 
secretion.  

Epidemiology of Type-1 Diabetes Mellitus 
 

T1DM is one of the most common chronic diseases of childhood and is classified as an 
autoimmune disease. Most common autoimmune disorders predominantly affect females, 
but,T1DM equally affects males and females with a slight male predominance in younger 
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children. This and other inconsistencies have raised questions as to whether T1DM is a 
“pure” auto-immune disease or whether the auto-immune component is a marker of a 
separate primary trigger .3,4  We discuss these issues later in this review.   

 
The incidence and prevalence of T1DM vary by age, season, geographic location, and 
within different racial and ethnic groups. Of cases diagnosed before the age of 20, however, 
two peaks of T1DM presentation are observed; one between 5 and 7 years of age, and the 
other during puberty at the mid-teens.5 However, first presentation of T1DM actually is as 
common in adulthood as it is in childhood and is characterized by a milder course; the term 
LADA, (Latent, Auto-immune, Diabetes of Adults) is used to describe this entity. A seasonal 
variation in the incidence of T1DM is also observed; the majority of new cases of T1DM are 
diagnosed mostly in autumn and winter.6  Findings from large T1DM registry studies such 
as the World Health Organization Multinational Project for Childhood Diabetes, known as 
the DIAMOND Project, EURODIAB   and others monitor incidence and other 
epidemiological markers . 
 

1) The World Health Organization Multinational Project for Childhood Diabetes, known as the 
DIAMOND Project (in 50 countries), EURODIAB (in Europe), and SEARCH for Diabetes in 
Youth (in the USA) were established to address the implications of diabetes in youth and 
describe the incidence of T1DM. Wide variations in incidence of T1DM exist throughout 
the world, lowest in China and Venezuela (0.1 per 100,000 per year) and highest in 
Finland and Sardinia (50-60per 100,000 per year) (55).7 A multicenter study focusing on 
identifying the prevalence and incidence of diabetes by type, age, gender, and ethnicity 
found a 1.8% annual increase in the prevalence of T1DM among American youth from 
2002-2003 to 2011-2012, whereas T2DM had increased 4.8% annually from 2002-2003 to 
2011-2012 (Table 3). 8  The greatest increase was seen in youth of minority racial/ethnic 
groups.8 Similar  rates of increase in T2DM in teens are reported from the UK, India , 
China and Japan. 

 
 
 
 
 
 
 
 

Table 3: Incidence ofT1DM in the USA(per 100,000/year)  

 Age Group 

 0-4 yr 5-9 yr 10-14 yr 15-19 yr 

Non-Hispanic White 18.6 28.1 32.9 15.1 

African American 9.7 16.2 19.2 11.1 

Hispanic American 9.1 15.7 17.6 12.1 

American Indian 4.1 5.5 7.1 4.8 
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Asian and Pacific Islander American 6.1 8.0 8.3 6.8 

All 14.3 22.1 25.9 33.1 

 
 
 
Although, there is a wide variance in the incidence and prevalence of diabetes 
throughout the world, the number of youth who are being diagnosed with T1DM has 
been growing at an annual rate of about 3 percent 9and a similar increased annual rate 
was also observed among U.S. youth. 10 This rising incidence of T1DM in children 
across the world in a short period of time clearly cannot be explained by genetic factors. 
Analytical epidemiological studies suggest that environmental risk factors, operating 
early in life, might be contributing to the increasing trend in incidence of T1DM.11,12 

 
On the basis of estimates for the number of people with diabetes in 2014 ,the cost of 
health care of diabetes in the US is estimated to be $105 billion per annum and the 
direct annual cost of diabetes in the world is Intl$825 billion.13  However studies 
indicate that many more diabetic adults diagnosed as having T2DM phenotype 
actually have T1DM  as defined by the presence of antibodies to islet cell 
components1,2; the term LADA, Latent Autoimmune Diabetes of Adults, is often used 
to describe this group. 14 

 
NATURAL HISTORY OF TYPE 1 DIABETES MELLITUS 
 

a.) Structure and Functions of the Pancreas 
Pancreatic ß cells secrete insulin and are found in the islets of Langerhans. These islets are 
specialized groups of a few hundred to a few thousand endocrine cells that are anatomically 
and functionally discrete from pancreatic exocrine tissue, the primary function of which is to 
secrete pancreatic enzymes into the duodenum. Normal subjects have about one million 
islets, which in total weigh only 1-2 grams and constitute less than 1% of the mass of the 
pancreas. Furthermore, islets are composed of various types of cells that are interconnected 
as a regulatory network to regulate the disposition of nutrients and their utilization for energy 
use and tissue growth and repair. At least 70% are ß cells  localized in the core of the islets, 
surrounded by α-cells that secrete glucagon, δ-cells that secrete somatostatin and PP cells 
that secrete pancreatic polypeptide.  All the cells communicate with each other through their 
extracellular spaces and through gap junctions; communication is further modulated by a 
rich network of sympathetic and para sympathetic innervation. 
 
Insulin, a peptide hormone composed of 51 amino acids is synthesized, packaged and secreted 
in pancreatic ß cells. Insulin is synthesized as preproinsulin in the ribosomes of rough 
endoplasmic reticulum. The preproinsulin is then cleaved to proinsulin that is transported to the 
Golgi apparatus where it is packaged into secretory granules. Most of the proinsulin is cleaved 
into equimolar amounts of insulin and connecting (or C)-peptide in the secretory granules. 
Because the C-peptide sequence differs from that of insulin, and because, unlike insulin, it is 
not extracted by the liver, it is possible to estimate β-cell insulin secretion by measuring C-
peptide, even in the presence of insulin antibodies resulting from insulin replacement therapy 
that impair the ability to measure insulin directly. Similarly, because C-peptide is an index of 
endogenous insulin secretion, and because C-peptide is not extracted by the liver, the ratio of 
C-peptide: insulin should exceed 1; when it is less than 1, implying a high insulin value, 
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exogenous insulin may have been used. This has diagnostic and forensic utility in diagnosing 
causes of hypoglycemia. 
 

Glucose is a major regulator of insulin secretion (Figure 1). When extracellular fluid glucose 
concentrations rise after a meal, glucose is taken up by the ß cells via glucose transporters, 
GLUT2 and GLUT1. Glucose is then phosphorylated into glucose-6-phosphate by islet specific 
glucokinase and metabolized thereby increasing cellular ATP concentrations. The rise in ATP 
alters the resting ratio of ATP:ADP,  that closes potassium- dependent ATP (K-ATP) channels in 
the β-cell membrane,  resulting in accumulation of intracellular potassium that causes membrane 
depolarization and influx of calcium via a voltage gated calcium channel. The rise in intracellular 
free calcium in ß-cells promotes margination of the secretory granules, their fusion with the cell 
membrane, and release of cell contents which include insulin into the extracellular space. An 
immediately releasable pool of insulin granules adjacent to the plasma membrane is responsible 
for an acute (first phase) insulin response; with ongoing stimulation, a pool of granules in the 
interior of the cell is mobilized and released as the “second phase” response. Amino acids also 
stimulate insulin release  by a similar mechanism that involves the enzyme glutamate 
dehydrogenase which enables metabolism and ATP production by certain amino acids. Defects in 
the genes regulating these processes may result in diabetes if the KATP channel is prevented 
from closing normally (activating mutations) or syndromes of hyperinsulinemic hypoglycemia if the 
KATP channel is prevented from opening (inactivating mutations)These aspects are discussed in 
greater detail in the section on Monogenic forms of diabetes(see below). 
 

 
 
 
 
 

Commented [M1]:  
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Figure 1: Insulin secretion by Pancreatic β cell 
In the stimulated state, glucose is transported into the β cell by the GLUT2 transporter which 
undergoes phosphorylation by glucokinase and glucose is then metabolized.  This results in an 
increase in the ATP/ADP ratio and initiation of a cascade of events that is characterized by 
closure of the KATP channel, decreased flux of potassium across the membrane, membrane 
depolarization, and calcium influx.  This cascade ultimately results in insulin release from 
storage granules.  The KATP channel shown is composed of four small subunits, Kir6.2, that 
surround a central pore and four larger regulatory subunits constituting SUR1.  In the resting 
state, the potassium channel is open, modulated by the ratio of ATP to ADP.   
Leucine also stimulates insulin secretion by allosterically activating GDH and by increasing the 
oxidation of glutamate; this then increases the ATPADP ratio leading to the cascade of events 
beginning with closure of the KATP channel.   
MCT-1: Monocarboxylate transporter-1, SCHAD: Short chain 3-hydroxyacyl-CoA 
dehydrogenase, SUR1: SulfonylUrea receptor 1, Kir 6.2: Potassium Inward Rectifying Channel 
6.2, UCP-2: Uncoupling protein 2, HNF4α: Hepatocyte Nuclear Factor 4α, HNF1 α: Hepatocyte 
Nuclear Factor 4α, K+: Potassium, ATP: Adenosine Triphosphate, GDH: Glutamate 
Dehydrogenase, GLUT-2: Glucose Transporter 2 

 
b). Metabolic Derangements of Type-1 Diabetes Mellitus 

 
As the pancreatic ß cell mass declines in an islet cell antibody (ICA) positive person, the first 
metabolic abnormality discernable is a decline in the first phase of insulin release (FPIR) to an 
IVGTT.15 The insulin level after a 3-4 minute infusion of glucose at 0.5Gms/kg rises abruptly in 
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normal children at about 8 years of age, perhaps coincident with the onset of adrenarche.16 In 
the relatives and children from the general population with positive ICA, a decline in the FPIR is 
a strong predictive marker of evolving diabetes.16-18 

Subsequently, in evolving T1DM there is a rise in the fasting glucose level followed by an 
inability to keep the two-hour, post-OGTT glucose level below 200mg/dl (11.1mM). Transient 
insulin resistance also occurs in untreated T1DM and is due to raised levels of free fatty acids 
(FFAs) from uncontrolled lipolysis 19, as well as decreased levels of hepatic glucokinase and 
insulin regulated GLUT 4 glucose transporters in adipocytes which contribute to  the onset of 
symptomatic diabetes.20-22 Prolonged hyperglycemia itself likely impairs the ability to secrete 
insulin and  when insulin replacement therapy begins, there is usually some recovery in the 
patient's ability to secrete insulin (the "honeymoon" period). However, within months to years, 
this partial recovery in endogenous insulin secretion ultimately fails. If it does not fail after 2 
years, another form of diabetes, such as MODY should be suspected.  Initially, the glucagon 
secreting cells within the pancreatic islets remain relatively preserved, resulting in excessive 
secretion of glucagon relative to insulin after protein meals.23 These elevated glucagon levels 
exacerbate the effects of the insulin deficiency, and promote lipolysis and ketogenesis , effects 
that can be partially reversed by an infusion of somatostatin.24. As the mass of islet cells 
decline, there is also loss of amylin, an islet cell hormone that down-regulates glucagon 
secretion. Thus, an analogue of amylin (pramlintide- marketed under the trade name Symlin) 
can be used as adjunctive therapy with insulin replacement. In time, with continued loss of 
islets, glucagon deficiency develops in established long standing T1DM, rendering patients 
more susceptible to insulin-induced hypoglycemia.23,25  Insulin is the hormone of "feasting", 
promoting utilization and deposition of ingested nutrients into body stores, as well as having 
multiple anabolic effects in many tissues. Progressive insulin deficiency thus induces a 
starvation like state, associated with excessive hepatic and renal gluconeogenesis, decreased 
peripheral utilization of glucose, hyperglycemia with resultant glycosuria, loss of water and 
sodium salts, and proteolysis in muscle liberating amino acids such as alanine and glutamine as 
substrates for gluconeogenesis.26-28 Uncontrolled lipolysis  leads to rapid mobilization of 
triglycerides and increased formation of very low density lipoprotein (VLDL) and fatty acids, 
which are metabolized to yield beta hydroxybutyric and aceto-acetic acids(ketone bodies) and 
contribute to keto-acidosis (. Ketoacidosis is a life threatening metabolic decompensation that is 
characterized by hyperglycemia, dehydration, metabolic acidosis and ketosis, all the result of 
the effects of severe insulin deficiency. Specifically, hepatic glucokinase levels fall with 
insulinopenia, synthesis of hepatic triglyceride and glycogen levels decline, malonyl CoA falls 
and thereby carnitine palmitoyltransferase-I levels rise promoting the transport of fatty acyl-CoA 
into mitochondria with the formation of acetyl-CoA.29-31  In the liver, acetyl-CoA is converted into 
ß-hydroxybutyrate and acetoacetate in a proportion that depends upon the prevailing redox 
state, which provide an additional fuel substrates for muscle and brain.28,32,33 Lipoprotein lipases 
are also inactivated, leading to reduced hydrolysis of triglycerides that,if severe, may turn the 
serum milky with increased VLDL characteristic of the type 4 lipemic phenotype.34-36. 
 
 
c). Genetic Susceptibility to Type-1 Diabetes Mellitus 

 
Individuals with autoimmune T1DM have inherited a number of quantitative trait loci (QTL) that 
encode protective and predisposing alleles which have exceeded the net genetic threshold 
required to predispose them to the disease.37  However, this genetic threshold (penetrance) is 
dependent in turn on chance interactions with greater predisposing than protective 
environmental forces. The multiple genetic influences in T1DM comprise a major effect from 
DR/DQ genotypes of the HLA complex(some 50% of the genetic effect), coupled to several 
other QTLs with minor influences (Table 4). All of the latter QTLs are not obligatory genetic 
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elements themselves since they are of minor-influence, but they collectively interact to create 
additive influences on the genetic threshold. Siblings of a diabetic patient develop T1DM at 
about 15fold greater frequency than persons in the general population (prevalence 1:250-300), 
or at a γs value of 15. The HLA predisposition to T1DM is encoded by cis- and trans 
complementation DQA1*/DQB1* heterodimers which have an arginine at residue 52 of the A 
chain and a neutral amino acid (DQB1*0302, *0201) rather than a charged aspartic acid at 
residue 57 of the B chain (DQB1*0602/3 and DQB1*0301) 37, as modified by DRB1*04 subtypes 
(*0401 and *0405 are susceptible and *0403 and 6 are resistant types)38 in the HLA genotype. 
Further, HLA-DP alleles have also been implicated, even though they are at a considerable 
recombination frequency away from the closely linked DR/DQ loci. 39 Other genes involved 
include the variable number of tandem repeat (VNTR) alleles 5' to the insulin (INS) gene on 
chromosome 11p15, where the protective class III alleles (>200 repeats) are associated with 
increased expression of insulin in the thymus, leading to a more efficient eradication of insulin 
autoreactive T cells than class I alleles (26-63 repeats) that confer susceptibility to develop 
diabetes.40,41 There are also CTLA-4 gene polymorphisms on chromosome 2q that are 
associated with T1DM. CTLA-4 is an induced accessory molecule that is expressed on activated 
T cells. CTLA-4 interacts with B7.2 expressed by antigen presenting cells (APC), signaling 
apoptosis of T cells that become activated as part of an immune response, thereby confining the 
immune response. The non-obese diabetic(NOD) mouse, a model for autoimmune diabetes, 
has an enlarged lymphoid mass because of resistance of their T cells to undergo apoptosis, as 
do CTLA-4 knockout mice, which readily develop lymphocytic organ infiltrates like NOD mice. 
These genes thus collectively affect the general ability to be tolerant to "self" antigens. Another 
susceptibility locus, (the IDDM 4) in the genomic interval on chromosome 11q13harbors the high 
affinity IgE Fc receptor gene that has been linked to atopy and asthma, which are characterized 
byTh2 responses that may protect individuals against the development of anti- islet Th1 
responses, and thereby protect against T1DM. There are other genomic intervals associated 
with or linked to T1DM that have been putatively mapped, but these mostly lack plausible 
candidate genes in the DNA region, and pathogenic mechanisms for them cannot yet be 
offered. The NOD mouse however has been subjected to extensive genetic mapping studies, in 
the hopes that genomic intervals harboring susceptibility or protective genes which are syntenic 
to humans will be discovered, thus hastening the identification of equivalent defective genes. 

 
Table 4: Genotypes of the HLA complex associated with Diabetes Mellitus 

Locus Chromosome Candidate 
Genes/Microsatellites 

References 

IDDM1 6p21.3* HLA-DQ/DR 42,43 

IDDM2 11p15* INS VNTR 44,45 
IDDM3 15q26 D15s107 46 
IDDM4 11q13 MDU1, ZFM1, RT6, 

FADD/MORT1, LRP5 
47,48 

IDDM5 6q24-27 ESR, MnSOD 49 

IDDM6 18q12-q21 D18s487, D18s64, JK 
(Kidd locus) 

50 

IDDM7 2q31 D2s152, IL-1, 
NEUROD, GALNT3 

51 
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IDDM8 6q25-27 D6s264, D6s446, 
D6s281 

49 

IDDM9 3q21-25 D3s1303 52 

IDDM10 10p11-q11 D10s193, D10s208, 
D10s588 

53 

IDDM11 14q24.3-q31 D14s67 54 

IDDM12 2q33* CTLA-4, CD28 55 

IDDM13 2q34 D2s137, D2s164, 
IGFBP2, IGFBP5 

56 

IDDM14 ? NCBI# 3413  

IDDM15 6q21 D6s283, D6s434, 
D6s1580 

49 

IDDM16 ? NCBI# 3415  

IDDM17 10q25 D10s1750- D10s1773 57 

2p12 EIF2AK3  58 

5p11-q13   59 

16p  D16s405- D16s207 59 

16q22-q24  D16s515- D16s520 52 

1q42  D1s1617 60 

Xp11  DXS1068 61 
 

In summary, T1DM is a complex, multifactorial disease involving genetic predisposition and an 
environmental triggering event, of which viral causes have bee proposed . Although more than 
50 loci have been identified, genes involved in  immune regulation including HLA subtypes,VNTR 
in insulin itself,CTLA4,PTPN22,AIRE, and IL2R remain most prominent. 62,63  The HLA 
association, especially class II, remains the strongest predictor of T1DM risk. The heterozygous 
DR3/DR4 genotype carries the highest genetic risk for T1DM in non-Hispanic whites. 42-67  In 
conclusion, insulitic islets from recent-onset T1D subjects show overexpression of ISGs, with an 
expression pattern similar to that seen in islets infected with virus or exposed to IFN-γ/interleukin-
1β or IFN-α. 

 
 
 
d). Autoantigens and Autoantibodies in Type-1 Diabetes Mellitus 

 
The Doniach group in London, first reported islet cell autoantibodies in patients with 
autoimmune polyglandular syndromes (APSs) 68, especially in those with APS type-1 (APS-1) 
69, even though such patients did not often develop diabetes. Lendrum and colleagues, having 
failed to find serological evidence for an autoimmune basis for chronic pancreatitis, did succeed 
in finding Islet Cell Antibodies (ICA) detectable by indirect immunofluorescence in patients with 
T1DM. Islet cell surface reactive autoantibodies and autoreactive peripheral blood T cells were 
also reported.70,71 Over the years that followed, the presence of ICA in US patients was 
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confirmed but with distinctly lower frequencies of ICA among African American diabetic 
patients.72 Insulin autoantibodies (IAA) were discovered in patients with T1DM before their first 
dose of insulin replacement had been received.73  The presence of IAA together with ICA 
identified a group of non-diabetic relatives of probands with T1DM, that were at high risk for 
T1DM themselves.74 Insulin itself is not an ICA antigen that can be detected by the indirect 
immunofluorescent technique. Subsequently, much of the antigenic nature of the ICA reactivity 
has become clearer. It was recognized that many patients with "stiff" man syndrome who were 
prone to develop diabetes, also had ICA and autoantibodies to glutamic acid decarboxylase 
(GAD65). These GAD autoantibodies penetrated the blood brain barrier. High concentrations of 
GAD in the cerebellum reduce brain levels of the inhibitory neurotransmitter gamma 
aminobutyric acid (GABA), thereby causing the appearance of temporal lobe epilepsy, 
depressed cognition, muscle spasms, cerebellar incoordination and motor dysfunctions. That 
GAD65 was the antigen that accounted for the 64KDa islet cell protein previously discovered by 
Baekkeskov to react with autoantibodies in T1DM, was later confirmed by the same 
investigator.75 Antibodies to recombinant GAD65 and GAD67 in T1DM patients were soon 
reported.76 The autoantibodies reacted to the antigens by conformational rather linear epitopes, 
and thus with native rather than denatured antigens. Therefore, they were best detected by 
liquid phase assays such as radioimmunoassay, rather than by an ELISA technique. In stiff-man 
syndrome, the predominant 
 
GAD autoantibodies reacted with linear epitopes. It became known that besides islet cell 64 
KDa sized proteins, autoantibodies in the sera of T1DM patients also precipitated islet cell 
proteins of 50, 40 and 37 KDa as well.77 

 
The next islet cell antigen discovered was one of the two-dozen tyrosine phosphatases 
expressed in islet cells, insulinoma antigen-2 (IA-2).78 This antigen shared structural homologies 
with the ICA-512 antigen.79 A second tyrosine phosphatase named IA-2ß was discovered 
next.80 These additional tyrosine phosphatase antigens allowed for the matching of the islet cell 
proteins previously identifiable only by their molecular weights.Thus, GAD65 and its tryptic 
fragment explained the 64 and 50 KDa proteins, while tryptic fragments of IA-2 and IA- 2ß were 
identical with the 40 KDa and the 37 KDa islet precipitable proteins respectively.81 The tyrosine 
phosphatases are a family of transmembrane enzymes of which only these two are expressed 
by the pancreatic islets and react with T1DM autoantibodies. The reactivity is almost exclusively 
with the internal domains of these molecules, suggesting that they arise as a consequence of 
islet cell damage from autoimmunity. Antibodies to IA-2 cross-react with those of IA-2ß in about 
50% of the patient sera. Some unusual patient sera however react exclusively with IA-2ß. The 
question of why only these two members of the tyrosine phosphatase family are targets of islet 
cell autoimmunity has been answered by the finding that they are relatively resistant to 
proteolytic enzymatic digestion, and once released from islet cells after their lysis, are insoluble 
and thus become better antigens for auto-immunization, than those that remain soluble and are 
more rapidly digested.82 

 
Recently, another antigen of 38KDa size (GLIMA) was added to the islet cell group, albeit only a 
minority of patient's sera reacts to it.83 Still more islet cell autoantigens are likely to be 
discovered. The detection of islet cell autoantibodies is useful for differentiating T1DM from 
diabetes of other causes, and can be used to predict onset of diabetes months to years before 
onset of the clinical disease 17,18,84,85 in non-diabetic relatives of probands with T1DM.  
Importantly, the clinical onset of the disease is often long preceded by the appearance of 
autoantibodies reactive to islet cells (ICA) 85 and to insulin 74, as independent age-related 
variables in predicting a diabetic outcome86. 
Islet cell autoantibodies (ICA) also show a strong tendency to disappear after diabetes onset 
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when all ß cells are destroyed.87,88 
 
 
 
Studies in mice demonstrated a critical role of autoantibodies to GAD65 in the induction of 
autoimmune diabetes in NOD mice. In humans, the German BABY-DIAB study and the Finnish 
TRIGR study showed that islet autoantibodies which are mostly IgG class can be transferred 
through the placenta from islet antibody-positive mothers to their offspring. 89,90Most of the 
antibodies, however, disappeared from the circulation of the infant within the first year of life, 
indicating that they represent maternal antibodies and unlikely that they are markers of fetal 
induction of B-cell autoimmunity.90 ).  In the German BABY-DIAB study, it has been 
demonstrated that 729 offspring of mothers with T1DM had significantly lower risk of developing 
multiple islet autoantibodies (5 year risk 1.3%) and diabetes (8-year risk 1.1%) when they were 
GAD or IA-2 positive, than offspring who were islet autoantibody negative at birth.91  These 
findings suggest that fetal exposure to islet 
autoantibodies may protect from future diabetes. Furthermore, the German BABY-DIAB study 
finding is consistent with the overall decreased risk of development of diabetes in offspring of 
mother with T1DM compared with that of offspring of fathers with T1DM and nondiabetic 
mothers.92 

 
The timing of the appearance of the autoantibodies seems to be important. It was found that 
progression to multiple islet autoantibodies was fastest in children who were antibody positive 
by age 2 years and that progression to diabetes was inversely related to the age of first 
positivity for multiple autoantibodies. 93  

 
The presence of multiple autoantibodies strikingly increases the risk of diabetes, whereas one 
of the above autoantibodies in the absence of all of the others when tested for, denotes only a 
modestly increased risk.17,18 This suggests that antigenic epitope spreading is involved in a 
sustained or accelerated autoimmune attack. 69, 94  Besides autoimmunity to islet cell 
autoantigens, patients with T1DM are subject to other autoimmunities. Thus T1DM is a 
component part of the autoimmune polyglandular syndromes, commonly in APS-2  (Diabetes 
Mellitus, Addison Disease, Hypothyroidism) and with less frequency in APS-1(AIRE gene 
mutations).69 Accordingly, patients with T1DM have high rates of thyroid autoimmunity, 
especially if they are females 95 96, and are at increased risk for Addison's disease 96, atrophic 
gastritis  97, pernicious anemia95, celiac disease 98, and vitiligo 99. 
 
Table 5: Autoantibody Targets in Type 1 Diabetes 
glutamic acid decarboxylase 65 
Islet cells 
Insulin 
Zinc Transporter 8 

 
 
 
e). Antigen Specific Cellular Immunity in Type-1 Diabetes Mellitus 

 
Autoreactive T cells that develop in impending T1DM, localize to the pancreatic islets where 
they become a component part of the evolving insulitis lesions. Thus circulating autoreactive T 
cells are relatively sparse in impending T1DM. Nevertheless, antigen specific T cells are 
identifiable through prolonged in-vitro cultures in the presence of purified or recombinant islet 
cell autoantigens such as GAD 100, 101 and IA-2 102. In fact, autoreactivity to a large number of 
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autoantigens have been reported in both human and murine diabetes.103 T cell proliferative 
responses to insulin and GAD65, and more generally to islet extracts, have been repeatedly 
reported in both patients with T1DM104,105. However, both in humans and NOD mice, reports of 
spontaneous proliferative responses have been difficult to reproduce and validate, probably 
because of the relative paucity of autoreactive T cells in peripheral blood samples, and the 
ready contamination of recombinant "test" antigens by lymphotoxin or lipopolysaccharide (LPS), 
that by itself, can produce proliferative responses even when present in trace amounts. 
Furthermore, significant T cell responses to insulin, proinsulin or GAD65 antigen were reported, 
in some normal controls as well as and T1DM patients .106-108 Numerous laboratories have 
reported T cell reactivityin diabetic patients against GAD65 and IA-2 and their peptides with 
variable results.102,104,109-114 However, in established diabetes, the loss of the majority of ß cell 
mass resulting in associated loss of GAD65 and other ß cell antigens, in turn leads to the 
inactivation of T cells due to the loss of the peptide antigens that were driving the response. 
Thus antigenic/epitopic spreading is an undesirable phenomenon associated with progression in 
autoimmune diseases like T1DM to a clinically significant outcome. 

 
Pathogenesis of Type-1 Diabetes Mellitus 
The availability of Biobreeding (BB) rats and nonobese diabetic (NOD) mice, the rodent models 
of T1DM, has greatly enhanced our understanding of the possible pathogenic mechanisms 
involved (Fig. 2). Recently, it has become possible to compare these findings with findings in 
human islets, obtained from post mortem specimens of the pancreas through the network of 
Pancreatic Organ Donors (nPOD) and from patients with recent onset DM via endoscopic 
pancreatic biopsy (DiViD study,Norway).83,115,116 In addition, epidemiological studies aimed at 
the prediction and prevention of T1DM permit  a  picture of the natural history to emerge. The 
process of destruction of β-cells is chronic in nature, often beginning during infancy and 
continuing over the many months or years that follow. At the time of clinical diagnosis of T1DM, 
about +80% of the β- cells have been destroyed, the islets are infiltrated with chronic 
inflammatory mononuclear cells (insulitis), including CD8+ cytotoxic T cells. Once islet cell 
autoimmunity has begun, progression to islet cell destruction is quite variable, with some 
patients rapidly progressing to clinical diabetes, while others remain in a non-progressive state. 
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Figure 2. The pathogenesis of islet cell destruction. Islet cell proteins are 
presented by antigen presenting cells (APCs) to naïve Th0 type CD4+ T 
cells in association with MHC class II molecules. Interleukin (IL)-12 is thus 
secreted by APCs that promotes the differentiation of Th0 cells to Th1 type 
cells. Th1 cells secrete IL-2 and IFN-γ that further stimulate CD8+ cytotoxic 
T cells or macrophages to release free radicals (super-oxides) or 
perforin/granzymes, leading to ß cell apoptosis or death. CD8+ cytotoxic T 
cells further mediate ß cell death by Fas mediated mechanisms. Interleukin 
(IL)-4, on the other hand, secreted mainly by natural killer T (NKT) cells 
drives Th0 cell to Th2 pathway leading to benign insulitis. 

 
Diabetes risk and time to diabetes in relatives of patients directly correlates with the number of 
different autoantibodies present. The pathogenesis of T1DM has been extensively studied, but 
the exact mechanism involved in the initiation and progression of β-cell destruction is still 
unclear. The presentation of beta cell-specific autoantigens by antigen- presenting cells (APC) 
[macrophages or dendritic cells (DC)] to CD4+ helper T cells in association with MHC class II 
molecules is considered to be the first step in the initiation of the disease process. Macrophages 
secrete interleukin (IL)-12, stimulating CD4 + T cells to secrete interferon (IFN)-γ and IL-2. IFN-γ 
stimulates other resting macrophages to release other 
cytokines such as IL-1β, tumor necrosis factor (TNF-α) and free radicals, which are toxic to 
pancreatic β-cells. During this process, cytokines induce the migration of β-cell autoantigen 
specific CD8+ cytotoxic T cells. On recognizing specific autoantigen on ß cells in association 
with class I molecules, these CD8+ cytotoxic T cells cause ß cell damage by releasing perforin 
and granzyme and by Fas-mediated apoptosis of the beta cells. Continued destruction of beta 
cells eventually results in the clinical onset of diabetes. 

 
Recently, these concepts derived from studies in the rodent models have been challenged as 
having the same pathologic process that occur in humans. Analysis of variations in histopathology 
observed from these organ donors provide mechanistic differences related to etiological agents 
and serve an important function in terms of identifying the heterogeneity of T1D.117 The findings 
are not always consistent with those of the rodent models.  For example, the dense infiltration of 
islets by T-cells is evident in the pancreas of those who succumb to DKA at onset, but more 
chronic cases show a patchy distribution of destroyed and functioning islets containing beta cells 
with insulin suggesting a defect in secretion rather than synthesis. In the DiViD (Diabetes Virus 
Detection) study, expression of inflammatory markers, predominance of Class I antigens (rather 
than expression of Class 2 antigens)  in islets, and actual viral isolations suggest a more acute 
process. Taken together, the studies suggest that T1DM may be a heterogenenous group of 
conditions in which auto-immunity may be a consequence or companion rather than the initiating 
mechanism. These findings begin to explain why prediction of developing T1DM in those from 
affected families considered at risk has become quite accurate, whereas prevention or reversal of 
DM by immune intervention or modulation has failed repeatedly. 3,4,118  
 
 
 
 
 

 
THE INDUCTIVE EVENT IN TYPE 1 DIABETES 
Various mechanisms have been proposed: 

 
i. Molecular Mimicry 
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In antigenic molecular mimicry, cross-reactive immune responses occur due tosignificant 
structural homologies shared by molecules encoded by dissimilar genes.  

 
The incidence of T1DM has increased over the last three to four decades in Europe, and the 
clinical disease exhibits preferential seasonal onset.119 These observations emphasize the role 
of environmental factors in the disease process. It has long been suggested that T1DM in 
humans is caused by viral infections.120-122 However, despite a vast increase in the information 
regarding the various genetic factors controlling the disease, little is known about the role of the 
putative environmental factors that might provide a more direct approach to therapy.8 
Specifically, allegations that childhood vaccines could be causal have not been upheld by more 
extensive controlled studies. 

 
The disease pathogenesis may involve multiple factors including the genetics of the host, strain 
of the virus, activation status of the autoreactive T cells, upregulation of pancreatic MHC class I 
antigens, molecular mimicry between viral and ß cell epitopes and direct islet cell destruction by 
viral cytolysis. Viruses, as one of the environmental factors affecting the induction of T1DM, 
may act as triggering agents of autoimmunity or as primary injurious agents, which directly 
damage pancreatic ß cells. Immune responses against a determinant shared by host cells and 
a virus could cause a tissue-specific immune response by generation of cytotoxic cross-reactive 
effector lymphocytes or antibodies that recognize self-proteins located on the target cells. 
Monoclonal antibodies against viruses have been observed to be capable of cross-reacting with 
host determinants.123 

 
Several studies in humans also point to viruses as triggers of the disease.124 Coxsackie B4 
virus and rubella virus have been linked with T1DM. In a few instances, Coxsackie B4 virus has 
even been directly isolated from pancreatic tissues of individuals with acute T1DM. Inoculation 
of this virus into mice, in one report, produced diabetes.125 The possibility that viruses might 
cause some cases of T1DM by infecting and destroying pancreatic ß-cells has received 
considerable attention. However, it is difficult to demonstrate in-vivo that viruses replicate in 
human ß-cells and/or produce diabetes in man. An in-vitro system was therefore developed to 
determine whether viruses are capable of destroying human β-cells in culture.126,127 By this 
method, it was clearly shown that several common human viruses, including mumps virus 128, 
Coxsackie B3 virus129, Coxsackie B4 virus 125, reovirus type 

3 130, could infect human ß-cells. In addition, by radioimmunoassay, it was shown that the 
infection markedly decreased the insulin content of the ß-cells. 
 
A strong correlation was found between the CMV genome in the immunocytes and the islet cell 
autoantibodies in the sera from diabetic patients.131 About 15% of newly diagnosed 
autoimmune T1DM patients have been reported to have persistent CMV infections. 
Furthermore, it has been proposed that a molecular mimicry between protein 2C (p2C) of 
Coxsackie virus B4 and the autoantigen GAD65 may play a role in pathogenesis of T1DM. 
Kaufman et al 132 and Vreugdenhil et al122, showed that the amino acid sequence of p2C shares a 
striking homology with a sequence in GAD65 (PEVKEK) and is highly conserved in Coxsackie virus B4 
isolates as well as in different viruses of the subgroup of Coxsackie B-like viruses. These are the 
most prevalent enteroviruses and therefore the exposure to the mimicry motif should be a 
frequent event throughout the life. Furthermore, they suggested that molecular mimicry might be 
limited to the HLA-DR3 subpopulation of the T1D patients. 

 
Although numerous sequence similarities between viral proteins and ß-cell autoantigens are 
plausible, the relationship between Coxsackie virus infection and GAD65 autoimmunity has 
received the most attention. 
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Glutamate Decarboxylase (GAD) 

 

The finding by Kauffman et al 132, of a striking sequence homology of 18 amino acid peptide 
between human GAD65 and the Coxsackie virus p2-C protein, enhanced the evidence of a 
specific molecular mimicry model involving GAD. In addition, this specific region of GAD65 
contains a T cell epitope involved in the GAD cellular autoimmunity in humans with IMD100  
and this region is an early target of the cellular immunity in NOD mice 133,134. GAD catalyzes 
the formation of the inhibitory neurotransmitter γ-amino butyric acid (GABA) from glutamine.101 
Two forms of GAD exist (GAD65 and GAD67). GAD65 is the predominant form within the human 
pancreatic islet cells, while GAD67 predominates in mouse islets. Within the islets, GAD is 
predominantly observed within the ß-cells, while its roles in the inhibition of somatostatin and 
glucagon secretion and in the regulation of proinsulin synthesis and insulin secretion, have 
also been suggested.135 

 
Another study further supports a link between Coxsackie virus and T1DM, associating IgM 
antibodies to Coxsackie B virus as a marker of recent exposure to the virus in newly diagnosed 
IMD patients and age/sex-matched controls.136 In that report, humoral immunity to Coxsackie 
virus and GAD appeared to cluster, even in people without diabetes. A series of overlapping 
synthetic GAD65 peptides were used to study the most reactive T cell determinants in 
individuals at increased risk for T1DM, i.e. autoantibody positive, first degree relatives of T1DM 
patients. Elevated in vitro T cell responses were observed to GAD65 peptides (amino acids 
247-266 and 260-279) in newly diagnosed T1DM patients and autoantibody positive at- risk 
individuals.137 The sequence of this region of GAD65 (amino acids 250-273) is significantly 
similar to the p2-C protein of Coxsackie B virus .120 However, not all published reports have 
demonstrated a linkage between immunity to GAD and Coxsackie virus. For example, one 
study identified a non-Coxsackie-homologous region of GAD65 as a predominant cellular 
immune epitope while studying the polyclonal human T cell responses.112 

 
 
Insulinoma Antigen Two (IA-2) 

 

Tyrosine phosphatase IA-2 is another molecular target of pancreatic islet autoimmunity in 
T1DM. In one recent study, the epitope spanning 805-820 amino acid elicited maximum T-cell 
responses in all at-risk relatives, out of a total of 68 overlapping, synthetic peptides 
encompassing the intracytoplasmic domain of IA-2.138 This epitope was found to have 56% 
identity and 100% similarity over 9 amino acids with a sequence in VP7, a major immunogenic 
protein of human rotavirus. This dominant epitope also has 75-45% identity and 88-64% 
similarity over 8-14 amino acids to sequences in Dengue, cytomegalovirus, measles, hepatitis 
C and canine distemper viruses and the bacterium Haemophilus influenzae. 
Furthermore, three other IA-2 epitope peptides have 71-100% similarity over 7-12 amino acid 
stretch to herpes, rhino-, hanta- and flavi-viruses. Two others have 80-82% similarity with 
dietary proteins of milk, wheat and bean proteins. These molecular mimicries could lead to 
triggering or exacerbation of ß-cell autoimmunity. 

 
 
ii. Superantigens 

 
Besides molecular mimicry, retroviral expression of superantigens (Sags) may be able to 
activate clonal expansion of autoreactive T cell clones. Superantigens have been implicated in 
the pathogenesis of the various autoimmune diseases.139,140 Originally described as minor-
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lymphocyte stimulating antigens, retroviral Sags expressed by B cells interact with the 
development of T helper cells of both Th1 and Th2 subtypes in mice. A study in patients with 
T1D demonstrated that two thirds of IAA positive sera also reacted with p73.141 Conrad et al 142 
 isolated a novel mouse mammary tumor virus-related human endogenous retrovirus (HERV), 
in patients suffering from acute onset T1DM. He termed them the HERV IDDMK1,2 22 subtype. 
They further showed that the N-terminal moiety of the envelope (env) gene encoded a MHC 
class II-dependent superantigen. He proposed that expression of this Sag, induced extra-
pancreatically and by professional antigen-presenting cells, could lead to ß-cell destruction via 
the systemic activation of autoreactive T cells. He further reported the selective expansion of 
Vß7+ T cells in the islet cell infiltrates from two patients with recent onset IMD was associated 
with extensive junctional diversity of Vß7+ T cell clones. These investigators demonstrated that 
islet cell membrane preparations preferentially expanded Vß7+ T cells from non-diabetic 
peripheral blood mononuclear cells.143 However, other investigators were unable to confirm 
T1DM specificity of the IDDMK1,2 22, since it was equally recoverable as viremia from controls 
as well as patients.144 Furthermore, both patients and controls made antibodies to env proteins.  

 
In order to establish molecular mimicry as a mechanism responsible for the autoimmune 
diseases it is important to identify the precise epitope that initiates the putative cross-reactive 
immune response. Additional complexity that has come to various animal studies is that of 
epitope spreading.145 An increasing array of autoantigens or autoantigenic peptides reactive 
with autoantibodies develop over time. Both intramolecular and intermolecular epitope 
spreading has been described in NOD mice.133,146 These studies demonstrated that T- cell 
responses in NOD mice expand in vivo against a defined group of islet cell antigens in an 
orderly sequential manner. These responses in the young NOD mice first show a strong 
reactivity to GAD enzyme and not to other islet cell antigens. Furthermore, the initial 
response to GAD is first limited to one region of the protein only. Gradually, this response 
spreads intramolecularly to involve other regions of the protein. Eventually, after the 
destructive islet cell inflammation (insulitis) as a result of autoimmunity to ß-cells, the T-cell 
responses spread intermolecularly to involve other islet cell proteins (e.g. heat shock protein 
60, carboxypeptidase H and insulin) as well.147 This epitope spreading makes it difficult to 
predict which putative cross-reactions, if any, are important in terms of disease induction, 
and which do not give rise to autoimmune pathology, particularly in humans who are 
exposed to many infections. 

 
Deficiencies in immunoregulation in type-1 diabetes mellitus 

 
There is both evidence for and speculation about defective central and peripheral 
mechanisms of immunoregulation in the autoimmune form of T1DM. 

 
Deletion of autoreactive T cells in the thymus, is one mechanism for the induction of 
tolerance to self antigens (central deletion). This may involve diminished expression of 
insulin in the thymus of susceptible individuals due to the presence of class I VNTR alleles 5' 
to the insulin gene as already discussed. Others have suggested that it is the ineffective 
antigenic binding of the T1DM-prone HLA-DQ or -DR that promotes islet cell autoimmunity, 
since this permits autoreactive T cells to escape thymic ablation and pass into circulation. 

 
In addition to clonal T cell deletion and anergy in thymus, peripheral regulatory T (Treg) cells are 
essential for the down regulation of T cell responses to both foreign and self antigens, and for the 
prevention of autoimmunity.  
Various studies have identified defects in the peripheral Treg cells in T1DM patients148,149 as 
well as in NOD mice affecting both NKT cells150,151 as well as CD4+CD25+ suppressor T 
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cells 152. Since these Treg cells are not absent in either species, ways to stimulate them 
should be actively sought to provide novel therapies for the future. The possibility of future 
therapeutic use of Treg cells in human autoimmune diseases lies heavily on basic studies 
that are designed to elucidate the mechanisms of induction and function of these cells. 
Therapy with immunomodulatory compounds that specifically target endogenous pools of 
Treg cells can be envisioned.153 This approach requires a more detailed investigation into 
the intracellular and extracellular events that regulate the differentiation and expansion of 
these cells in-vivo. 
 
Environmental factors in Type-1 diabetes mellitus 

 
Besides the familial predispositions, much evidence points to a major role of environmental 
factors in the disease pathogenesis. More than 60% of identical twins affected by T1DM 
are discordant for the disease and most of the non diabetic twins lack islet cell 
autoantibodies. The 
disease frequency is on a steep rise in Western countries over the past 3 decades that cannot 
be explained by the accumulation of the susceptible genes. Africans, who dominate the tropics, 
and Chinese, both have low frequencies of the susceptible genes and low incidence rates of 
T1DM72, except where there has been a high rate of Caucasian genetic admixture.  
More persuasively, migrants from countries with low hygiene and low incidence rates of T1DM 
to countries with high hygiene and high incidence become as susceptible as the natives within a 
generation 154. Animals reared in sterile environments have early onsets and increased 
frequencies of diabetes while those infected with a variety of micro-organisms and parasites 
become protected.155-159 The hygiene hypothesis proposed a strong causal relationship 
between prevailing level of community hygiene, especially with respect to drinking water and 
the dramatic increase in the incidence of autoimmune diseases such as T1DM in the modern 
world, has been referred to as the hygiene hypothesis. 

 
Role of diet 

 
Despite persuasive epidemiological evidence for environmental factors that precipitate T1DM in 
genetically susceptible individuals, their identity remains elusive. This may be due to long period 
between exposure and the onset of hyperglycemia, the complex genetics of the disease, and 
the likely multiple insults of perhaps different derivation involved in the initiation of the insulitis 
and subsequent ß cell destruction. Dietary habits such as consumption of dairy products and 
early weaning of infants, and dietary toxins such as nitrates and nitrites have been associated 
with this autoimmune disease .160,161 

 
Close correlations between per capita consumption of unfermented milk proteins and the 
incidence of diabetes between countries162-164 and within a country have been reported 165. The 
claimed negative association between diabetes incidence and a high frequency and long duration 
of breast-feeding is more controversial 160 and has not been confirmed by reports from Germany 
166 and the United States. Several studies have found associations between the consumption of 
foods rich in nitrates (or nitrites), which is reduced to nitrite in the gut, and the occurrence of 
T1DM.167,168 The active species is believed to be N-Nitroso compounds that can be formed from 
the reaction of nitrite with amines.169 Most recently, the gut microbiome and its modulation by 
dietary factors, has been implicated in the causality of T1DM.170  
 
 
The incidence of T1DM varies worldwide according to dietary patterns. In-depth exploration of 
dietary risk factors during pregnancy and early neonatal life is warranted to confirm whether and 
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to what extent diet cooperates with genetic susceptibility in the early onset of T1DM. 
 
Screening methods 

 
T1DM is by far the most common chronic metabolic disease of childhood and adolescence and 
its prevalence and incidence has been increasing worldwide.93 This increase of incidence is the 
highest among the children under 5 years of age . 171Prevention of T1DM would constitute a 
major advance in the lives of pre-diabetic individuals and significantly relieve 

a major current and predicted burden on both the individual and the health care system. 
Identifying individuals at risk developing the disease and the prevention of the disease 
progression are two important steps before the onset of disease. The presence of islet 
autoantibodies, the genetic predisposition with specific HLA haplotypes are known risk factors 
associated with the development of diabetes. Most studies have been carried out on first-degree 
relatives of T1DM patients who have 15-fold increased risk of the developing diabetes in 
comparison to general population. However, more than 90% of all patients developing T1DM do 
not have an affected family member. Therefore, it is crucial to establish a standardized screening 
method which will efficiently identify individuals at high risk in a general population. School 
children between 5-18 years of age were screened to evaluate the predictive value of 
autoantibodies over a period of 6-12 years.172 This study indicated that the risk of developing 
T1DM when ICA is detected in the absence of other autoantibodies is low, whereas with more 
than one autoantibody (either GAD65A, IAA, IA-2A or IA-2ßA) the risk of developing T1DM in a 
general population is high. Similar findings were also reported in other studies.173-175 These 
results support the value of multiple autoantibodies as good predictive markers for T1DM not 
only in first degree relatives but also in the general population.  Consequently, the American 
Diabetes Association now considers the presence of 2 or more autoantibodies as form of early 
presymptomatic diabetes. 176  
 
 
PREVENTION TRIALS IN TYPE-1 DIABETES MELLITUS 

 
The elucidation of the natural history of pre-diabetes has allowed for the characterization of 
those individuals at greatest risk for developing autoimmune T1DM, through the use of genetic, 
immunologic and metabolic markers. This predictive ability has become possible in both high- 
risk relatives and the general population as mentioned above. The subclinical autoimmune 
destruction of ß-cells in the pancreas may last from a few months to several years. This pre- 
diabetic period has allowed investigators to test prevention strategies, which mainly have 
focused in modulation of autoimmune process.177 A number of studies were initiated with 
general immunosuppressive agents, such as cyclosporin-A, azathioprine and prednisone in 
patients with new clinical onset T1DM, with positive results in that insulin free remission rates 
were increased and endogenous insulin (C-peptide) reserves were improved.118 However, 
despite continued immunotherapy with the attendant risks of renal damage and lymphomas at 
higher doses, relapses proved to be the rule and such treatments were abandoned. Cyclosporin 
given at a prediabetic phase of the disease delayed but did not prevent diabetes.178,179 

 
With the observation that nicotinamide prevents pancreatic ß cell destruction from 
streptozotocin by raising otherwise depleted levels of islet cell NAD as a result of superoxide 
induced DNA breaks and repair, the vitamin was subjected to a large European and Canadian 
trial called The European Nicotinamide Diabetes Intervention Trial (ENDIT). However, 
nicotinamide failed to prevent progression to diabetes. 180 In addition, a  study in Germany 
(DENIS)   was completed without any effect of nicotinamide on prevention of T1DM.181.More 
recent studies have used Anti CD21(Rituximab), Anti CD3,Anti CTLA-4, oral insulin,GAD65 
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peptides, and infusions of Treg cells  with early encouraging results in preserving insulin 
secretion,  but without durable effects.182 These results in humans were often based on 
animal studies in NOD mice.183-185 In stark contrast to these encouraging studies in NOD 
mice, where a variety of interventions induce long lasting remissions, none of the studies in 
humans has so far yielded long-lasting remissions in humans.177,182  

 
 

Table 6: Prevention Trials 118  

Study and 
Phase 

Drug Age Eligibility Ref 

TRIGR Cow’s milk 
hydrolyzate 

0-7 days First Degree relatives, 
High-risk HLA 

186 

BABY DIET Gluten-free diet Younger than 3 
months 

Relatives, high risk 
HLA DR, DQ 

187 

TrialNet NIP Docosahexaenoic 
acid 

>24 weeks 
gestation- 
newborn 

Relatives, HLA DR3 or 
DR4 

188 

TrialNet 
Teplizumab 

Teplizumab 8-45 years At least 2 confirmed 
autoantibodies and 
abnormal glucose 

tolerance 

 189,190 

DIAPREV-IT GAD-alum 4-18 years Islet autoantibody 
positive 

191 

TrialNet Oral 
Insulin, Phase III 

Human insulin 1-45 years Relatives, 2+islet 
antibodies including to 
insulin 

192 

INIT I/II, 
 

Intranasal insulin 4-30 years Relatives, 2+islet 
antibodies, HLA not 
DR2, DQ6 

193 

Pre-Point, 
Phase I/II 

Human insulin 1.5-7 years First degree relatives, 
>50% risk of T1DM 

194 

FINDIA Insulin-free whey- 
based formula 

Infants General population, 
high-risk HLA DQ 

195 

 
 
 
TYPE-2 DIABETES MELLITUS 

 
As the US passed into the 21st century, the epidemic of obesity and T2DM continues unabated, 
affecting more younger adults and children than in the past, and they will spend longer periods 
of their life with the disease. Perhaps under pressure of commercial interests, we as a nation 
have learned to eat too fast,  too much, and the wrong foods. For those with the energy 
conserving "thrifty" genes of insulin resistance syndrome (IRS), this excess of food and 
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especially of the insulin provoking carbohydrates, leads to obesity, an IRS phenotype and 
T2DM. Nearly half of the new cases of diabetes in teens can be termed T2DM. 196  Currently, in 
some US states where there are large numbers of ethnic groups prone to IRS and T2DM 
(Hispanics, American Indians, Asian Indians, African Americans), the number of children with 
T2DM is beginning to rival if not surpass the number with T1DM. It is estimated that 1 in 3 
people born in the US in the year of 2000 will develop T2DM sometime in their lifetime.197 

 
The increased incidence of T2DM is attributed to the increase in obesity worldwide. 
Approximately 3700 youths are diagnosed with T2DM every year in the US 198 and it is 
estimated that the number of youth with T2DM will almost quadruple from 22,820 in 2010 to  
approximately 85,000 adolescents with T2DM by 2050.10 Similar rates of increased in youths 
with T2DM are reported from the UK, India, China and Japan.10  

 
 
Pathophysiology of Type-2 Diabetes Mellitus 

 
T2DM is characterized by insulin resistance in peripheral tissues (muscle, fat, and liver) with 
progressive β cell failure, ,especially manifest with defective insulin secretion in response to 
a glucose stimulus, increased glucose production by the liver, and no markers of pancreatic 
autoimmunity.199  The progressive decline in β cell function is more rapid in youths at 20-
30% decline per year versus 7-11% decleine per year in adults, even with aggressive 
medical therapy.  

 
Table 7: Pathophysiologic Factors.  
Obesity/Insulin resistance (IR) See IRS  

Intrauterine environment Epidemiological studies have shown a strong 
association between poor intrauterine growth and the 
subsequent development of the Metabolic 
Syndrome. It was suggested that the effects of poor 
nutrition in early life impair the development of 
pancreas and resultin permanent changes in 
glucose- insulin metabolism.200 

 

Gestational diabetes Studies in Pima Indian women showed significant 
increased risk of developing T2DM in offsprings of 
women with diabetes during pregnancy compared 
to non-diabetic mothers.201 

Ethnicity There is a significant increase risk in certain 
ethnic/race groups.197 

Gender and puberty Puberty is a state of IR brought about by the increased 
secretion of GH during this process. There is a 30%-
50% decrease in insulin sensitivity and compensatory 
increase in insulin secretion. Those that have an 
inherent defect in insulin secretion and inadequate 
response to the resistance develop DM. The mean 
age at diagnosis of T2DM in children is 13.5 years, 
corresponding to the time of peak adolescent growth 
and development. 
Girls are 1.5-3 times more likely than boys to develop 
T2D as children or adolescents (270). 
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Family History Between 74-100% of children with T2DM have a first 
or second-degree relative with T2DM. The lifetime risk 
is 40% if one parent is affected and 70% if both 
parents are affected.202 

Genetics Genome-wide studies led the discovery of single- 
nucleotide polymorphisms (SNPs) at several loci 
regulating insulin secretion.To date, more than 30 
diabetes-related SNPS (diabetoSNPs) have been 
identified.203 
Several genes have been found to be associated with 
T2D; 

1. Peroxisome proliferator-Activated receptor-
γ2 (PPAR-γ2) Gene: An important regulator 
of lipid and glucose homeostasis. Missense 
mutation Pro12Ala in PPAR-γ2 is associated 
with decreased risk for T2DM. 

2. Kir6.2 Gene (KCNJ11): The missense 
mutationGlu23Lys in the Kir6.2 gene has 
been associated with increased risk of T2DM. 

3. MODY genes (HNF4a and HNF1β) 
4. Transcription Factor 7-like (TCF7L2) Gene: A 

product of HMG box containing transcription 
factors that play role in the glucose 
homeostasis. Specific polymorphysms in the 
TCF7L2 gene increase the risk of 
progression from IGT to T2DM. 

5. Calpain-10 Gene: Calpains are Ca+2 
dependent cystein proteases and play a role in 
regulating insulin secretion and action. 

 

 
 
The natural history of progression to T2DM is that a person with IRS begins to decompensate, 
with a fall in the disposition index (the amount of insulin produced for the degree of insulin 
resistance). Subsequently levels of blood glucose rise after feeding; elevations in fasting blood 
glucose levels occur later. At this early stage, diet, exercise and insulin sensitizers are 
indicated.  

 
INSULIN RESISTANCE SYNDROME (IRS) 

 
This syndrome complex is centered upon genetic predispositions to insulin resistance and the 
hyperinsulinemia that results from it. This medical state is also named syndrome X and the 
metabolic syndrome, however the descriptive term insulin resistance syndrome (IRS) is the one 
increasingly used in the literature.199,204 In IRS, there are poorly understood genetic lesions that 
lead to insulin resistance from early life if not during embryogenesis. In many affected families, 
the disease occurrences suggest a dominant mode of transmission. In rare families, mutations 
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affecting insulin receptors, or peroxisome proliferators-gamma (PPAR- gamma) expression 
may be the cause of it.205 IRS is the association of insulin and leptin resistance with obesity 
(typically with increased visceral fat), functional adrenal hyper-androgenism, functional ovarian 
hyper-androgenism, hypersecretion of pituitary LH, dyslipidemia, hypertension, and features of 
hyperinsulinemia such as late reactive hypoglycemia and acanthosis nigricans. When the 
compensation by increased insulin secretion fails, glucose intolerance and T2DM result. 

 
 
a). Natural history of Insulin Resistance Syndrome 
 
Several studies indicate that many children and adults with T2DM were born small for gestational 
age. This suggests that the insulin resistant state existed in-utero since it is insulin rather than 
pituitary growth hormone that is the principal growth-promoting hormone of the unborn child,and 
decreased insulin action might be anticipated to impair embryonic growth. After birth, premature 
pubarche resulting from excessive adrenal androgens such as dihydroepiandrosterone (DHEA) 
may occur, even before obesity has appeared. Thus, it has been proposed by some that obesity 
may be the result of insulin resistance, and not its cause. Excessive DHEA may be seen best 
after ACTH injection leading to a clinical suspicion that the 3ß hydroxysteroid dehydrogenase 
enzyme is underactive. Obesity can begin from infancy but often dates from about 8 years of age 
when physiological pubarche occurs. Early onset obesity raises the possibility of a genetic 
satiety causation such as the Prader-Willi Syndrome or deficiency of MC4R. Acanthosis 
nigricans resulting from increased keratinocytes in certain areas of skin is thought to result from 
insulin stimulation of insulin-like growth factor 1 (IGF-1) receptors and often  manifests during 
puberty Menarche may be delayed in age at onset or menses may be missed after menarche, or 
else there can be dysfunctional bleeding resulting from anovulatory cycles. 
Hirsutism often becomes bothersome during adolescence, as may male pattern hair thinning, 
persistent acne and development of polycystic ovaries. An increase in very low density 
lipoprotein (VLDL) secretion by the liver is observed with increasing age, associated with 
diminished, atherogenesis protective, high density lipoprotein cholesterol (HDL-chol), a 
dyslipidemic profile that promotes early and progressive onset of atherosclerosis, predisposing 
to coronary heart disease (CHD), stroke and peripheral vascular diseases in later life. The latter 
problems are compounded by the appearance of hypertension and type-2 diabetes. The glucose 
intolerance that precedes type-2 diabetes often first involves post-prandial glucose levels or the 
two-hour time point of the OGTT as discussed above, but later induces a rise in fasting glucose 
(impaired fasting glucose) levels as well. The mechanism is thought to be ß cell exhaustion or 
more likely a glucosamine and lipid mediated islet cell toxicity. Once this stage is reached, 
damage to the islets can become irreversible, resulting in the dual problems of insulin resistance 
and insulinopenia, both of which need to be addressed in therapeutic strategies.  In children and 
adolescents, the progression of impaired insulin secretion and its complications including the 
appearance of albuminuria, exhibits a faster tempo than that of adults presenting later in life. 
Hence, these adolescents may more rapidly progress to requiring insulin therapy.  

 
Table 8: Clinical features of IRS. Adapted from refs 202,205,206.  
Clinical Features   
Infancy Family history of obesity and T2DM, 

SGA, LGA 
Gestational Diabetes 
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Childhood/Adolescence Acanthosis nigricans 
Premature adrenarche 
Obesity, pseudoacromegaly 
Striae, skin tags 
Amenorrhea 

 

Adulthood Tall Stature, pseudoacromegaly 
Fatty liver, focal glomerulosclerosis 
Hirsutism, ovarian hyperandrogenism, 
PCOS 
Endothelial dysfunction, atherosclerosis 
Increased carotid wall thickness, stroke 
CHD 
Glucose intolerance, T2DM 

 

 
 
 

↓IGFBP-1, ↓SHBG, ↑free testosterone 
 
↓CBG, ↑free cortisol 

 

↑VLDL, ↑TG, ↓HDL,  
Increased PAI-1, CRP, fibrinogen  
Adhesion molecules and uric acid  
Decrease first phase insulin response  
Increased decompensated insulin resistance  
Postprandial hyperglycemia  
Fasting hyperglycemia  
Diabetes  

 
 
 
b). Underlying mechanisms of Insulin resistance 

 
Obesity: Affected patients commonly show polyphagia, and may have voracious appetites that 
are characteristically resistant to dietary advice. When leptin deficiency was discovered in 
Ob/Ob mice and leptin receptor deficiency discovered in Db/Db mice, the adipocyte became to 
be appreciated as an endocrine cell rather than one that was an inert repository of triglycerides. 
However, the promise of a breakthrough in the understanding of human obesity was quickly 
dissipated when such lesions proved to be rare in humans. Obese patients with their greater 
degrees of adiposity also have the highest levels of leptin as expected, however these high 
levels do not reduce the appetites of IRS patients.207 Thus, such patients are also leptin 
resistant. Early trials of leptin therapy have not affected weight loss. However, patients with 
lipodystrophy who have leptin deficiency develop insulin resistance, hyper-insulinemia, 
dyslipidemia and T2DM, all of which respond dramatically to leptin given as therapy. 208,209   
Deficiencies in other appetite suppressing hormones such as resistin have more recently been 
implicated but not yet shown to have therapeutic relevance. Hyperinsulinemia itself is a 
compounding variable, in that excessive carbohydrate containing diets stimulate the highest 
levels of insulin and the greatest degrees of adiposity. Therapies such as metformin that 

Table 9: Laboratory features of IRS.  
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improve insulin sensitivity when combined with a diet restricted in low amounts of simple 
carbohydrates and exercise, can dramatically lower weight in children with IRS when they 
adhere to therapeutic guidelines. However, failure to adhere to instructions is a common 
problem in adolescents.210,211  

 
Hyperandrogenism: It is uncertain as to the degree to which the pituitary abnormality of 
increased LH secretion leads to the androgenic excess or vice versa. Probably, both are 
responses to the insulin resistance and hyperinsulinemia of IRS by mechanisms that have yet 
to be clearly understood. Androgens of ovarian origins usually predominate over those of the 
adrenal gland, albeit both are often found to be elevated. Sex hormone binding globulins in the 
circulation are often low, resulting in increased free androgens with their increased bio-
availability.212 This is often seen with testosterone, which can be raised or normal in hirsute 
girls whereas increased free testosterone levels are common.  

Interestingly, we hold that there is a clinical overlap between Cushing's syndrome and IRS .213 
Both tend to have visceral (central) obesity and striae suggestive of gluco-corticoid excess. 
However, whereas the patient with Cushing's syndrome has high levels of serum cortisol, the 
patient with IRS has low normal levels, albeit both have increased levels of urinary free cortisol. 
Again, the explanation may lie in the low levels of corticosteroid binding globulins found in IRS 
where circulating cortisol is disproportionately free. Some investigators have suggested that 
there is an impaired conversion of cortisol to the metabolically inactive cortisone in IRS. Further, 
the child with Cushing's syndrome is invariably growth retarded in contrast to the child with IRS 
whose linear growth tends to be excessive. In IRS and obesity, the GH levelsduring stimulation 
tests are suppressed implying a diagnosis of GH deficiency which likely is not the case as these 
children tend to be tall.., IGFBP levels in serum are depressed, resulting in an excessive free 
IGF-1 level, albeit the total IGF-1 concentration is usually normal. The pseudo-acromegaly 
observed in severely affected children with IRS may be occurring via this mechanism. In addition, 
high concentrations of insulin interact with the IGF-I receptor, thereby promoting growth.214  
 
Acanthosis nigricans: Stimulation of the IGF-1 receptors of skin kerotinocytes by high levels of 
circulating insulin is thought to explain their hyperplasia and excessive laying down of keratin in 
the skin of the neck, axillae, elbows and knees, skin creases and indeed most areas of skin .215  
In addition, excessive free IGF-1 may have the same effect, albeit the greater the degree of 
insulin resistance, the higher the insulin levels, the more striking the acanthosis nigricans.  
Increased bioavailabilty of IGF-1 (high IGF-1 and low IGFBP-1) are directly correlated with the 
severity of acanthosis nigricans 

 
Glucose intolerance and T2DM: Children and young adults affected by IRS are often 
hyperinsulinemic. In such persons, stimulation of insulin secretion by carbohydrates alone or 
with protein can induce an excessive but delayed rise in insulin secretion, reflected in an early 
excessive rise in glucose, followed by an excessive fall in glucose levels 3-5 hours afterwards, 
of sufficient severity to provoke symptoms of hypoglycemia. As the ability to secrete insulin 
declines, impaired glucose iolerance appears first. Later in the evolution of T2DM, the 2-hour 
criteria for diabetes during OGTT become apparent, followed later by impaired fasting 
hyperglycemia  and finally  by fasting hyperglycemia that meets the criteria for the diagnosis of 
diabetes. An HbA1c level can be used to screen diabetes as recommended by the American 
Diabetes Association. 
 

Table 10: Criteria for increased risk of diabetes 1 
Fasting plasma glucose  100 – 125 mg/dl 
2 hour plasma glucose after OGTT 140 – 199 mg/dl 
HbA1C  5.7 – 6.4% 
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Non-alcoholic steatohepatitis (NASH): It is also known as fatty liver or hepatic steatosis. The 
incidence of fatty liver among obese children was 2.6% in one study216, and hyperinsulinemia 
was found to be the major contributor for its’ development 217. A number of factors may play a 
role in the development of fatty liver including, induction of cytochrome P4502E1 during obesity, 
which is capable of generating free radicals, while the high level of dietary intake of 
polyunsaturated fatty acids or low intake of nutritional antioxidants contributes to the oxidative 
stress. Fatty liver alone appears to be a relatively benign disease, and can be reversible. 
However, it may progress over years to hepatic cirrhosis, liver failure, or hepatocellular 
carcinoma. The onset of disease is usually insidious. Laboratory evaluation indicates mild to 
moderate elevation of serum aminotransferases in most children and serum alanine 
aminotransferase (ALT) levels had been shown a useful screening for fatty liver in obese 
children.218 The ratio of aspartate aminotransferase (AST) to ALT is usually less than 1, but this 
ratio increases as fibrosis advances. Serum aminotransferases, alkaline phosphatase and 
gamma glutamyltransferase (GGT) levels are proposed surrogate markers of fatty liver.219,220 

 
Renal involvement: A form of focal glomerulosclerosis (often with IgA deposition) appears to 
be associated with IRS, leading to microalbuminuria. Hypertension becomes increasingly 
common through adolescence and beyond. The mechanisms responsible have not been 
elucidated.Inflammation: IRS and T2DM have increased markers of inflammation. This takes 
the form of increased levels of C-reactive protein, raised erythrocyte sedimentation rates 
(ESR) and increased cytokine (TNF-α) levels..Obese patients also have abnormalities of 
thyroid function suggestive of primary thyroid deficiency with modestly elevated TSH but 
normal or slightly elevated fT4 and fT3.These abnormalities resolve with weight loss and have 
therefore been interpreted as representing an adaptive response to obesity i.e. by raising TSH 
and free T3, caloric expenditure would increase. 221-223  Obese patients are thus often 
unnecessarily treated for hypothyroidism they do not have. They may however develop true 
hypothyroidism on the basis of associated Hashimoto's disease. 

 
 

ATYPICAL DIABETES 
Genetic Defects of ß-cell Function (Monogenic Diabetes) 

 
Monogenic forms of diabetes are characterized by impaired secretion of insulin 
from pancreatic β cells caused by a single gene mutation. These forms comprise a 
genetically heterogenous group of diabetes including, maturity onset diabetes of 
the young (MODY), permanent or transient neonatal diabetes (NDM), and 
mitochondrial diabetes. MODY is the most common form of monogenic diabetes, 
with autosomal dominant transmission of a gene encoding a primary defect in 
insulin secretion. 208,224-226 

 
Approximately 1 to 2 % of diabetes in Europe is MODY.227  The clinical 
characteristics of these patients are heterogeneous, and not reliable in predicting 
the underlying pathogenesis.228,229 It is often misdiagnosed as T1DM or T2DM. 
Several genetic abnormalities have been found that account for the disorder. 
Some members of an affected family may have the genetic defect but not develop 
the diabetes phenotype. Whether this is due to modifying genes or environmental 
factors is unclear. MODY differs from the classical immunological T1DM in several 
ways. With MODY, a dominant family history of diabetes (if known) is always 
present, hyperglycemia is mostly mild with a minimal tendency to ketosis before 
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the age of 25 years, the insulin secretion in response to oral (OGTT) or 
intravenous (IVGTT) glucose administration is modestly decreased, and evidence 
of islet cell autoimmunity is absent. It is estimated that more than 80% of patients 
with monogenic diabetes are either not diagnosed or are misclassified as type 1 or 
type 2 DM.230 
 
HNF-4α (MODY1), pancreatic and duodenal homeobox 1 gene (PDX1) [previously 
termed insulin promoter factor-1 (IPF-1)] (MODY4) and neurogenic differentiation 1 
gene (NeuroD1) and BETA2 (MODY6) are responsible for others. In contrast to 
MODY-2, patients with heterozygous mutations in the HNF1A, HNF4A, or HNF1B 
and more rarely in PDX1 or NEUROD1 have progressive deterioration in glucose 
tolerance and are at risk for developing complications of diabetes.231 
 
 

Table 11: Classification of MODY 

MOD Y  
TYPE Gene Genetic 

Locus Incidence Age at 
Diagnosis 

Primary 
Defect 

Associated 
Features 

Severity 
of   

Diabetes 
References 

1 HNF-4α 20q Rare Postpubert
al 

Transcription 
gene defects in 
ß-cells lead to 
impaired 
metabolic 
signaling of 
insulin 
secretion. 

- Severe 231 

2 Glucokinase 7p 10-60% Childhood 

impairment of 
ß-cells 
sensitivity to 
glucose and; 
defect in 
hepatic 
glycogenesis 

Reduced birth 
weight Mild 232 

3 HNF-1α 12q 20-60% Postpubert
al 

Similar to 
MODY1 

Renal 
glucosuria Severe 231-235 

4 PDX1 (IPF-1) 13q Rare Early 
adulthood 

Defects in 
transcription 
factors during 
embryogenesis 
lead to 
abnormal ß-
cell 
development 
and function 

- Mild 236 

5 HNF-1β 17cen- 
q21.3 Unknown Postpubert

al 
Similar with 
MODY 1 and 3 

Glomerolcystic 
kidney 
disease, 
female genital 
malformations, 
Hyperuricemia, 
abnormal liver 
function tests 

Mild 237 

6 NeuroD1/BE
TA2 2 Rare Early 

adulthood 
Defect in this 
gene causes - Unknown 238 
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abnormal 
development 
of ß cell and 
function 

7 KLF11 2p25 Very Rare Early 
adulthood 

Reduced 
glucose 
sensitivity of 
the beta cell 

Phenothype 
similar to T2D Unknown 239 

8 CEL 9q34 Very Rare  
<20 years 

Impaired 
endocrine and 
exocrine 
pancreatic 
function 

Exocrine 
pancreatic 
dysfunction 

Unknown 240 

9 PAX4 7q32 Very Rare <20 years 

Impaired gene 
transcription in 
pancreatic 
beta cells on 
apoptosis and 
proliferation 

- DKA is 
possible 

241,242 

10 INS 11p15.5 Very Rare <20 years 

Defect in this 
gene may 
result the loss 
of beta cell 

- Unknown 243 

11 BLK 8p23 Very Rare <20 years 

decreases 
insulin 
synthesis and 
secretion in 
response to 
glucose by up- 
regulating 
transcription 
factors 

Higher 
incidence in 
obese 
individuals 

Unknown 244 

12 ABCC8 11p15.1 < 1% <35 years 

Inactivating 
mutations 
cause impared 
secretion mild 
mode 

  
244  
 

13 KCNJ11 11p15.1 <1% 30    KCNJ11 

 
More recently, mutations in the tumor suppressor protein KLF-11 (MODY7), the 
carboxyl ester lipase CEL (MODY8), the transcription factor, paired box gene 4, 
PAX-4 (MODY9), the insulin gene, INS (MODY10), and tyrosine kinase, B-
lymphocyte specific gene, BLK (MODY11) have been described.  MODY 12 and 
MODY 13 are due to mutations in the ABCC8 and KCNJ11 genes, respectively.  
Mutations in these 2 genes also have been reported in neonatal diabetes.  They 
are very rare and represent fewer than 1% of all MODY cases. 
 
Neonatal Diabetes- is a rare disorder with an incidence of 1:100,000-1:200,000 
live births 208,245  It presents in first 6 months of life and its’ severity depends on the 
underlying mutation in that it is either transient or permanent. Almost 50% of cases 
with neonatal diabetes are permanent (PND) while the remainder are “transient” 
(TNDM) in that they remit, but may reappear and become apparent later in life or at 
times of stress. Heterozygous activating mutations in KCNJ11 and ABCC8 —which 
encode the Kir6.2 and SUR1 subunits, respectively, of the ATP-sensitive 
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potassium channel, are the most common causes of PND. Missense mutations in 
the INS gene are also identified in patients with PND and they may have an 
autosomal dominant or recessive inheritance pattern. 208,243,245 Genetic diagnosis is 
important since the KCNJ11 and ABCC8 mutations respond to treatment by 
sulfonylureas, possibly without need for additional insulin therapy because these 
drugs can close the β cell potassium channel by an ATP-independent route .246 It is 
increasingly apparent that the same mutations can become manifest for the first 
time well beyond infancy  and diagnosed as T2DM or rarely T1DM. Severe 
mutations in the KATP genes, especially KCNJ11 also may present with a 
neurological component  in a syndrome known as DEND(Developmental 
delay,Epilepsy,Neonatal Diabetes);early diagnosis and treatment with sulfonylurea 
drugs is reported to ameliorate the neurological manifestations as the KATP 
channels are expressed in the brain. The major form of   transient neonatal 
diabetes results from anomalies of the imprinted region on chromosome 6q24,but 
mutations in KCNJ11 or ABCC8 can also cause TNDM.208  Various rare forms of 
syndromic disease which include NDM are described; early diagnosis may diminish 
or delay the hitherto described natural history and consequences. 245,247 
 
Mitochondrial Diabetes- Point mutations in mitochondrial m.3243A→G cause 
another form of diabetes with an insulin secretory defect that is commonly 
associated with neuro-sensory hearing impairment and a strict maternal mode of 
inheritance.248 In addition, genetic abnormalities that result in the inability to 
convert pro-insulin to insulin 249, or the production of mutant insulin molecules250, 
are other examples of specific genetic defects in ß cell function which are rare 
causes of diabetes. 
 
Chronic Illnesses- Hemochromatosis is a progressively more common 
recognized cause of diabetes with aging, and does not present in a pediatric age 
group. However repeated blood transfusions for conditions such as thalassemia 
major can lead to diabetes associated with hemosiderosis.  
Many patients with cystic fibrosis develop a form of T1DM often during their 
teenage years which may require insulin replacement and is labeled “cystic 
fibrosis related diabetes (CFRD)”.251  Most CF patients now live long enough for 
this to have become a more common problem with impact on overall well being 
and severity of symptoms ascribed to CF and partially responsive to insulin 
therapy.  DKA is rare in CFRD, perhaps because of the concurrent effects on the 
α-cell secreting glucagon as well as the β-cell secreting insulin. Patients with 
Gitelman’s syndrome develop diabetes which resolves when they are adequately 
replaced with magnesium, excessively lost through the kidneys in this syndrome. 
Gitelman syndrome is a recessively inherited genetic entity, but the presentation 
of DM is usually not until later midlife.252  
 
 
Genetic Defects in Insulin Action 

 
There are a series of rare genetic abnormalities in the insulin receptor, or in the signal 
transduction events which follow insulin docking to its receptor resulting in diabetes. The 
recessive DNA breakage disease (Bloom’s syndrome) is associated with mild diabetes due to 
severe insulin resistance, with very high levels of circulating insulin and insulin like growth factor 
one (IGF-1). Progeria and lipodystrophy are other such causes.208  In the latter case, the 
absolute deficiency of leptin leads to uncontrolled lipolysis resulting in severe insulin resistance, 
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which is partially reversible by leptin administration. 208 
 
 
Endocrinopathies associated with hyperglycemia 

 
Several hormones, such as epinephrine, glucagon, cortisol, and growth hormone, antagonize 
the action of insulin. Whereas release of these hormones constitutes the protective counter 
regulatory response to hypoglycemia, primary over secretion of these hormones can result in 
glucose intolerance or overt diabetes. 

 
• Cushing's syndrome, due to pituitary and ACTH secreting adenomas or adrenal 

hyperplastic disease or to exogenous glucocorticoid administration, can lead to 
diabetes. 253  Steroid-induced diabetes is most often seen when there is pre- existing 
insulin resistance or a defect in insulin synthesis/secretion unmasked by the inability to 
increase insulin secretion to overcome the resistance to its actions induced by 
glucocorticoids. 

• Acromegaly is associated with overt diabetes in 10 to 15% of cases, and impaired 
glucose tolerance in a further 50%.254,255 In acromegaly, there is marked insulin 
resistance and hyperinsulinemic responses; DM occurs only when the 
hyperinsulinemic response cannot match the requirement to overcome the degree 
of resistance. . 

• Pheochromocytomas are associated with both inhibition of insulin secretion and an 
increase in hepatic glucose output.256 These changes lead to impaired glucose 
tolerance, the severity of which is directly related to the magnitude of catecholamine 
production.257 When seen in children, these are usually a component of the Von 
Hippel-Lindau syndrome, MEN2,and NF1. 

• Glucagon-secreting tumors (glucagonoma) are associated with an unusual constellation 
of clinical features, including skin rash, weight loss, anemia, and thromboembolic 
problems. Approximately 80% of these patients have either impaired glucose tolerance 
or diabetes.258 

• Somatostatin-secreting tumors (somatostatinomas) are typically associated with the triad 
of diabetes mellitus, cholelithiasis, and diarrhea with steatorrhea. 259 

• Although thyroxine is not a counter regulatory hormone, hyperthyroidism can interfere 
with glucose metabolism. It is associated with both increased sensitivity of pancreatic ß 
cells to glucose, resulting in increased insulin secretion, and antagonism to the 
peripheral action of insulin. The latter effect usually predominates, leading to impaired 
glucose tolerance in some untreated patients.260 

 
Drug- or Chemical-induced Diabetes   

 
A large number of drugs can impair glucose tolerance; they may act by decreasing insulin 
secretion, increasing hepatic glucose production, and/or by causing resistance to the action of 
insulin. 261Included in this list are several classes of antihypertensive drugs, such as beta 
blockers 262, protease inhibitors used for the treatment of HIV infection 263, and tacrolimus and 
cyclosporine used primarily to prevent transplant rejection 264,265. Drugs of the serotonin re-
uptake inhibitor (SSRIs) class can lead to obesity, impaired glucose intolerance and T2DM, 
especially if individuals were already insulin resistant before they started such medications. 

 
There is a common association between obesity, insulin resistance, hypertension, and 
dyslipidemia, which has been called syndrome X or the metabolic syndrome199,204,266,267. The 
administration of a thiazide diuretic or a ß-blocker to such patients can exacerbate the insulin 
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resistance and may bring on hyperglycemia 262. In comparison, angiotensin-converting enzyme 
(ACE) inhibitors and alpha-adrenergic antagonists (such as doxazosin) may improve insulin 
sensitivity. Because the former also protect against renal disease, they are the drugs of choice 
for diabetic patients with hypertension. 

 
 
Viral Infections 

 
Certain viruses e.g. Coxsackie B4, have been implicated to cause diabetes, either through 
direct ß cell destruction or possibly by inducing autoimmune damage. The direct proof of this 
however remains tenuous. Chronic hepatitis C virus infection is associated with an increased 
incidence of diabetes, but it remains uncertain as yet if there is a cause-and-effect relationship. 

 
 
Uncommon forms of Immune-mediated Diabetes 

 
Several uncommon forms of immune-mediated diabetes have been identified. 

 
• The stiff-man syndrome is an autoimmune disorder of the central nervous system, which 

is characterized by progressive muscle stiffness, rigidity, and spasms involving the axial 
muscles, with impairment of ambulation. 268  Patients characteristically have high titers 
of glutamic acid decarboxylase (GAD65) autoantibodies and diabetes occurs in at least 
one-third of cases. Graves’ disease is also common in the syndrome. Presentation is 
usually in early adulthood. 

• Anti-insulin receptor antibodies can bind to insulin receptors and either act as an agonist, 
leading to hypoglycemia, or block the binding of insulin and cause diabetes. 269 This so-
called type B insulin resistance is more common in females who show other signs of 
autoimmunity including systemic lupus erythematosis (SLE). However one study found 
that almost 10% of young patients with insulin resistance in the absence of autoimmune 
stigmata were also positive for insulin receptor autoantibodies.270 
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